Suppr超能文献

特定生长率对嗜酸热硫化叶菌脂质组成的影响。

The influence of the specific growth rate on the lipid composition of Sulfolobus acidocaldarius.

机构信息

Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.

Research Group for Mass Spectrometric Bio and Polymer Analytics, Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria.

出版信息

Extremophiles. 2020 May;24(3):413-420. doi: 10.1007/s00792-020-01165-1. Epub 2020 Mar 21.

Abstract

Archaeal lipids are constituted of two isoprenoid chains connected via ether bonds to glycerol in the sn-2, 3 position. Due to these unique properties archaeal lipids are significantly more stable against high temperature, low pH, oxidation and enzymatic degradation than conventional lipids. Additionally, in members of the phylum Crenarchaeota condensation of two (monopolar) archaeal diether lipids to a single (bipolar) tetraether lipid as well as formation of cyclopentane rings in the isoprenoid core strongly reduce permeability of the crenarchaeal membranes. In this work we show that the Crenarchaeum Sulfolobus acidocaldarius changes its lipid composition as reaction to a shift in growth rate caused by nutrient limitation. We thereby identified a novel influencing factor for the lipid composition of S. acidocaldarius and were able to determine the effect of this factor on the lipid composition by using MALDI-MS for the semi-quantification of an archaeal lipidome: a shift in the specific growth rate during a controlled continuous cultivation of S. acidocaldarius from 0.011 to 0.035 h led to a change in the ratio of diether to tetraether lipids from 1:3 to 1:5 and a decrease of the average number of cyclopentane rings from 5.1 to 4.6.

摘要

古菌脂类由通过醚键连接在 sn-2、3 位甘油上的两条异戊二烯链组成。由于这些独特的性质,古菌脂类比传统脂类更能耐受高温、低 pH 值、氧化和酶降解。此外,在门 Crenarchaeota 中,两个(单极)古菌双醚脂类缩合成一个(双极)四醚脂类,以及异戊二烯核心中环戊烷环的形成,强烈降低了 crenarchaeal 膜的通透性。在这项工作中,我们表明 Crenarchaeum Sulfolobus acidocaldarius 会根据营养限制引起的生长速率变化而改变其脂类组成。我们因此确定了影响 S. acidocaldarius 脂类组成的一个新因素,并通过 MALDI-MS 对半定量分析古菌脂类组来确定该因素对脂类组成的影响:在对 S. acidocaldarius 的受控连续培养过程中,比生长速率从 0.011 到 0.035 h 的变化导致二醚与四醚脂类的比例从 1:3 变为 1:5,并且平均环戊烷环数量从 5.1 减少到 4.6。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9943/7174258/20103fd9ff7e/792_2020_1165_Fig1_HTML.jpg

相似文献

1
The influence of the specific growth rate on the lipid composition of Sulfolobus acidocaldarius.
Extremophiles. 2020 May;24(3):413-420. doi: 10.1007/s00792-020-01165-1. Epub 2020 Mar 21.
4
Microvesicles Exhibit Unusually Tight Packing Properties as Revealed by Optical Spectroscopy.
Int J Mol Sci. 2019 Oct 25;20(21):5308. doi: 10.3390/ijms20215308.
5
Calditol-linked membrane lipids are required for acid tolerance in .
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12932-12937. doi: 10.1073/pnas.1814048115. Epub 2018 Dec 5.
6
Energy flux controls tetraether lipid cyclization in Sulfolobus acidocaldarius.
Environ Microbiol. 2020 Jan;22(1):343-353. doi: 10.1111/1462-2920.14851. Epub 2019 Nov 25.
7
The Cell Membrane of spp.-Homeoviscous Adaption and Biotechnological Applications.
Int J Mol Sci. 2020 May 30;21(11):3935. doi: 10.3390/ijms21113935.
8
Multiple environmental parameters impact lipid cyclization in Sulfolobus acidocaldarius.
Environ Microbiol. 2020 Sep;22(9):4046-4056. doi: 10.1111/1462-2920.15194.
9
Molecular modeling of archaebacterial bipolar tetraether lipid membranes.
Chem Phys Lipids. 2000 Apr;105(2):193-200. doi: 10.1016/s0009-3084(00)00126-2.
10
Biological Membranes in Extreme Conditions: Simulations of Anionic Archaeal Tetraether Lipid Membranes.
PLoS One. 2016 May 11;11(5):e0155287. doi: 10.1371/journal.pone.0155287. eCollection 2016.

引用本文的文献

1
Cyclization of archaeal membrane lipids impacts membrane protein activity and archaellum formation.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2423648122. doi: 10.1073/pnas.2423648122. Epub 2025 May 12.
2
Lipid hydrogen isotope compositions primarily reflect growth water in the model archaeon .
Appl Environ Microbiol. 2025 Apr 23;91(4):e0198324. doi: 10.1128/aem.01983-24. Epub 2025 Mar 25.
3
Impact of nutrient excess on physiology and metabolism of .
Front Microbiol. 2024 Oct 4;15:1475385. doi: 10.3389/fmicb.2024.1475385. eCollection 2024.
4
Development of a defined medium for the heterotrophic cultivation of Metallosphaera sedula.
Extremophiles. 2024 Jul 26;28(3):36. doi: 10.1007/s00792-024-01348-0.
5
Archaeosomes for Oral Drug Delivery: From Continuous Microfluidics Production to Powdered Formulations.
Pharmaceutics. 2024 May 23;16(6):694. doi: 10.3390/pharmaceutics16060694.
8
Mode of carbon and energy metabolism shifts lipid composition in the thermoacidophile .
Appl Environ Microbiol. 2024 Feb 21;90(2):e0136923. doi: 10.1128/aem.01369-23. Epub 2024 Jan 18.
9
Membrane lipid and expression responses of REY15A to acid and cold stress.
Front Microbiol. 2023 Aug 15;14:1219779. doi: 10.3389/fmicb.2023.1219779. eCollection 2023.
10
Membrane Adaptations and Cellular Responses of to the Allylamine Terbinafine.
Int J Mol Sci. 2023 Apr 15;24(8):7328. doi: 10.3390/ijms24087328.

本文引用的文献

1
A defined cultivation medium for Sulfolobus acidocaldarius.
J Biotechnol. 2019 Aug 10;301:56-67. doi: 10.1016/j.jbiotec.2019.04.028. Epub 2019 May 31.
2
Early Response of to Nutrient Limitation.
Front Microbiol. 2019 Jan 10;9:3201. doi: 10.3389/fmicb.2018.03201. eCollection 2018.
3
- A Potential Key Organism in Future Biotechnology.
Front Microbiol. 2017 Dec 12;8:2474. doi: 10.3389/fmicb.2017.02474. eCollection 2017.
8
Methanothermobacter thermautotrophicus modulates its membrane lipids in response to hydrogen and nutrient availability.
Front Microbiol. 2015 Jan 22;6:5. doi: 10.3389/fmicb.2015.00005. eCollection 2015.
9
Biosynthesis of archaeal membrane ether lipids.
Front Microbiol. 2014 Nov 26;5:641. doi: 10.3389/fmicb.2014.00641. eCollection 2014.
10
A re-evaluation of the archaeal membrane lipid biosynthetic pathway.
Nat Rev Microbiol. 2014 Jun;12(6):438-48. doi: 10.1038/nrmicro3260. Epub 2014 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验