Suppr超能文献

机器学习算法在预测创伤性脑损伤方面并不比回归模型表现得更好。

Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury.

机构信息

Departments of Public Health, Erasmus MC - University Medical Centre Rotterdam, Postbus 2040, 3000 CA, Rotterdam, the Netherlands.

Departments of Public Health, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, the Netherlands.

出版信息

J Clin Epidemiol. 2020 Jun;122:95-107. doi: 10.1016/j.jclinepi.2020.03.005. Epub 2020 Mar 20.

Abstract

OBJECTIVE

We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury.

STUDY DESIGN AND SETTING

We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified.

RESULTS

In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study.

CONCLUSION

ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations.

摘要

目的

我们旨在探讨常见机器学习(ML)算法在预测中重度创伤性脑损伤结局方面的附加价值。

研究设计与设置

我们在 IMPACT-II 数据库(15 项研究,n=11022)中对关键基线预测因子进行逻辑回归(LR)、套索回归和岭回归。ML 算法包括支持向量机、随机森林、梯度提升机和人工神经网络,并使用相同的预测因子进行训练。为了评估预测的泛化能力,我们对最近的 CENTER-TBI 研究(格拉斯哥昏迷量表<13 的患者,n=1554)进行了内部、内部-外部和外部验证。均对校准(校准斜率/截距)和判别(曲线下面积)进行了量化。

结果

在 IMPACT-II 数据库中,11022 例患者中有 3332 例(30%)死亡,5233 例(48%)预后不良(格拉斯哥结局量表<4)。在 CENTER-TBI 研究中,1554 例患者中有 348 例(29%)死亡,651 例(54%)预后不良。判别和校准在研究之间差异很大,而在研究的算法之间差异较小。CENTER-TBI 研究中死亡率的平均曲线下面积为 0.82,预后不良的平均曲线下面积为 0.77。

结论

在中重度创伤性脑损伤后结局预测的低维环境中,ML 算法可能不如传统回归方法表现出色。与基于回归的预测模型一样,ML 算法应经过严格验证,以确保其在新人群中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验