1Department of Radiology.
2Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh; and.
Neurosurg Focus. 2023 Jun;54(6):E14. doi: 10.3171/2023.3.FOCUS2376.
An estimated 1.5 million people die every year worldwide from traumatic brain injury (TBI). Physicians are relatively poor at predicting long-term outcomes early in patients with severe TBI. Machine learning (ML) has shown promise at improving prediction models across a variety of neurological diseases. The authors sought to explore the following: 1) how various ML models performed compared to standard logistic regression techniques, and 2) if properly calibrated ML models could accurately predict outcomes up to 2 years posttrauma.
A secondary analysis of a prospectively collected database of patients with severe TBI treated at a single level 1 trauma center between November 2002 and December 2018 was performed. Neurological outcomes were assessed at 3, 6, 12, and 24 months postinjury with the Glasgow Outcome Scale. The authors used ML models including support vector machine, neural network, decision tree, and naïve Bayes models to predict outcome across all 4 time points by using clinical information available on admission, and they compared performance to a logistic regression model. The authors attempted to predict unfavorable versus favorable outcomes (Glasgow Outcome Scale scores of 1-3 vs 4-5), as well as mortality. Models' performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) with 95% confidence interval and balanced accuracy.
Of the 599 patients in the database, the authors included 501, 537, 469, and 395 at 3, 6, 12, and 24 months posttrauma. Across all time points, the AUCs ranged from 0.71 to 0.85 for mortality and from 0.62 to 0.82 for unfavorable outcomes with various modeling strategies. Decision tree models performed worse than all other modeling approaches for multiple time points regarding both unfavorable outcomes and mortality. There were no statistically significant differences between any other models. After proper calibration, the models had little variation (0.02-0.05) across various time points.
The ML models tested herein performed with equivalent success compared with logistic regression techniques for prognostication in TBI. The TBI prognostication models could predict outcomes beyond 6 months, out to 2 years postinjury.
全球每年约有 150 万人死于创伤性脑损伤(TBI)。医生在预测严重 TBI 患者的长期预后方面相对较差。机器学习(ML)已显示出在改善各种神经疾病的预测模型方面的潜力。作者试图探索以下内容:1)各种 ML 模型与标准逻辑回归技术相比的表现,以及 2)如果经过适当校准的 ML 模型是否可以准确预测创伤后 2 年的结果。
对 2002 年 11 月至 2018 年 12 月期间在一家一级创伤中心接受治疗的严重 TBI 患者前瞻性收集的数据库进行二次分析。使用格拉斯哥结局量表(Glasgow Outcome Scale)在受伤后 3、6、12 和 24 个月评估神经学结果。作者使用 ML 模型,包括支持向量机、神经网络、决策树和朴素贝叶斯模型,根据入院时可用的临床信息预测所有 4 个时间点的结果,并将其与逻辑回归模型进行比较。作者试图预测不良结果(格拉斯哥结局量表评分为 1-3)与良好结果(格拉斯哥结局量表评分为 4-5)以及死亡率。使用接收器工作特征(ROC)曲线下面积(AUC)(95%置信区间和平衡准确性)评估模型性能。
在数据库中的 599 名患者中,作者纳入了 501、537、469 和 395 名在创伤后 3、6、12 和 24 个月的患者。在所有时间点,死亡率的 AUC 范围为 0.71 至 0.85,不良结果的 AUC 范围为 0.62 至 0.82,采用各种建模策略。对于多个时间点,决策树模型在不良结果和死亡率方面的表现均逊于所有其他建模方法。其他模型之间没有统计学上的显著差异。经过适当校准后,模型在不同时间点的差异很小(0.02-0.05)。
本文测试的 ML 模型与逻辑回归技术相比,在 TBI 预后方面表现相当成功。TBI 预后模型可以预测创伤后 6 个月以上,甚至 2 年的结果。