Suppr超能文献

学习潜在空间表示以预测患者预后:模型开发与验证

Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation.

作者信息

Rongali Subendhu, Rose Adam J, McManus David D, Bajracharya Adarsha S, Kapoor Alok, Granillo Edgard, Yu Hong

机构信息

College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA, United States.

Section of General Internal Medicine, Boston University School of Medicine, Boston, MA, United States.

出版信息

J Med Internet Res. 2020 Mar 23;22(3):e16374. doi: 10.2196/16374.

Abstract

BACKGROUND

Scalable and accurate health outcome prediction using electronic health record (EHR) data has gained much attention in research recently. Previous machine learning models mostly ignore relations between different types of clinical data (ie, laboratory components, International Classification of Diseases codes, and medications).

OBJECTIVE

This study aimed to model such relations and build predictive models using the EHR data from intensive care units. We developed innovative neural network models and compared them with the widely used logistic regression model and other state-of-the-art neural network models to predict the patient's mortality using their longitudinal EHR data.

METHODS

We built a set of neural network models that we collectively called as long short-term memory (LSTM) outcome prediction using comprehensive feature relations or in short, CLOUT. Our CLOUT models use a correlational neural network model to identify a latent space representation between different types of discrete clinical features during a patient's encounter and integrate the latent representation into an LSTM-based predictive model framework. In addition, we designed an ablation experiment to identify risk factors from our CLOUT models. Using physicians' input as the gold standard, we compared the risk factors identified by both CLOUT and logistic regression models.

RESULTS

Experiments on the Medical Information Mart for Intensive Care-III dataset (selected patient population: 7537) show that CLOUT (area under the receiver operating characteristic curve=0.89) has surpassed logistic regression (0.82) and other baseline NN models (<0.86). In addition, physicians' agreement with the CLOUT-derived risk factor rankings was statistically significantly higher than the agreement with the logistic regression model.

CONCLUSIONS

Our results support the applicability of CLOUT for real-world clinical use in identifying patients at high risk of mortality.

摘要

背景

利用电子健康记录(EHR)数据进行可扩展且准确的健康结果预测最近在研究中备受关注。以往的机器学习模型大多忽略了不同类型临床数据(即实验室检查结果、国际疾病分类编码和药物)之间的关系。

目的

本研究旨在对这些关系进行建模,并使用重症监护病房的EHR数据构建预测模型。我们开发了创新的神经网络模型,并将其与广泛使用的逻辑回归模型和其他先进的神经网络模型进行比较,以利用患者的纵向EHR数据预测患者的死亡率。

方法

我们构建了一组神经网络模型,统称为利用综合特征关系的长短期记忆(LSTM)结果预测模型,简称为CLOUT。我们的CLOUT模型使用相关神经网络模型来识别患者就诊期间不同类型离散临床特征之间的潜在空间表示,并将该潜在表示整合到基于LSTM的预测模型框架中。此外,我们设计了一项消融实验,以从我们的CLOUT模型中识别风险因素。以医生的输入作为金标准,我们比较了CLOUT模型和逻辑回归模型识别出的风险因素。

结果

对重症监护医学信息集市-III数据集(选定患者群体:7537例)的实验表明,CLOUT(受试者操作特征曲线下面积=0.89)超过了逻辑回归(0.82)和其他基线神经网络模型(<0.86)。此外,医生对CLOUT得出的风险因素排名的认同度在统计学上显著高于对逻辑回归模型的认同度。

结论

我们的结果支持CLOUT在实际临床中用于识别高死亡风险患者的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9596/7136840/d86ba7109495/jmir_v22i3e16374_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验