Suppr超能文献

使用纵向电子健康记录数据和长短时记忆神经网络预测癌症症状轨迹。

Prediction of Cancer Symptom Trajectory Using Longitudinal Electronic Health Record Data and Long Short-Term Memory Neural Network.

机构信息

The University of Iowa College of Nursing, Iowa City, IA.

The University of Iowa Tippie College of Business, Iowa City, IA.

出版信息

JCO Clin Cancer Inform. 2024 Mar;8:e2300039. doi: 10.1200/CCI.23.00039.

Abstract

PURPOSE

Ability to predict symptom severity and progression across treatment trajectories would allow clinicians to provide timely intervention and treatment planning. However, such predictions are difficult because of sparse and inconsistent assessment, and simplistic measures such as the last observed symptom severity are often used. The purpose of this study is to develop a model for predicting future cancer symptom experiences on the basis of past symptom experiences.

PATIENTS AND METHODS

We performed a retrospective, longitudinal analysis using records of patients with cancer (n = 208) hospitalized between 2008 and 2014. A long short-term memory (LSTM)-based recurrent neural network, a linear regression, and random forest models were trained on previous symptoms experienced and used to predict future symptom trajectories.

RESULTS

We found that at least one of three tested models (LSTM, linear regression, and random forest) outperform predictions based solely on the previous clinical observation. LSTM models significantly outperformed linear regression and random forest models in predicting nausea ( < .1) and psychosocial status ( < .01). Linear regression outperformed all models when predicting oral health ( < .01), while random forest outperformed all models when predicting mobility ( < .01) and nutrition ( < .01).

CONCLUSION

We can successfully predict patients' symptom trajectories with a prediction model, built with sparse assessment data, using routinely collected nursing documentation. The results of this project can be applied to better individualize symptom management to support cancer patients' quality of life.

摘要

目的

能够预测治疗轨迹中的症状严重程度和进展,将使临床医生能够及时进行干预和治疗规划。然而,由于评估稀疏且不一致,以及通常使用最后观察到的症状严重程度等简单措施,因此此类预测较为困难。本研究旨在基于过去的症状体验,为预测未来的癌症症状体验建立模型。

患者和方法

我们使用 2008 年至 2014 年间住院的癌症患者(n = 208)的记录进行了回顾性、纵向分析。基于先前经历的症状,对基于长短期记忆(LSTM)的递归神经网络、线性回归和随机森林模型进行训练,并用于预测未来的症状轨迹。

结果

我们发现,至少有三种测试模型(LSTM、线性回归和随机森林)中的一种优于仅基于先前临床观察的预测。LSTM 模型在预测恶心(<.1)和心理社会状况(<.01)方面明显优于线性回归和随机森林模型。线性回归在预测口腔健康(<.01)方面优于所有模型,而随机森林在预测移动性(<.01)和营养(<.01)方面优于所有模型。

结论

我们可以成功地使用基于稀疏评估数据构建的预测模型预测患者的症状轨迹,使用常规收集的护理记录。该项目的结果可应用于更好地个体化症状管理,以支持癌症患者的生活质量。

相似文献

3
Application of a time-series deep learning model to predict cardiac dysrhythmias in electronic health records.
PLoS One. 2021 Sep 13;16(9):e0239007. doi: 10.1371/journal.pone.0239007. eCollection 2021.
4
New onset delirium prediction using machine learning and long short-term memory (LSTM) in electronic health record.
J Am Med Inform Assoc. 2022 Dec 13;30(1):120-131. doi: 10.1093/jamia/ocac210.
5
Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models.
BMC Med Inform Decis Mak. 2021 Jan 6;21(1):5. doi: 10.1186/s12911-020-01345-1.
6
LSTM Model for Prediction of Heart Failure in Big Data.
J Med Syst. 2019 Mar 19;43(5):111. doi: 10.1007/s10916-019-1243-3.
10
Experimental comparison of linear regression and LSTM motion prediction models for MLC-tracking on an MRI-linac.
Med Phys. 2023 Nov;50(11):7083-7092. doi: 10.1002/mp.16770. Epub 2023 Oct 2.

引用本文的文献

1
2
Predicting progression events in multiple myeloma from routine blood work.
NPJ Digit Med. 2025 Apr 30;8(1):231. doi: 10.1038/s41746-025-01636-9.
3
Revolutionizing diagnosis of pulmonary based on CT: a systematic review of imaging analysis through deep learning.
Front Microbiol. 2025 Jan 8;15:1510026. doi: 10.3389/fmicb.2024.1510026. eCollection 2024.

本文引用的文献

1
The Case Time Series Design.
Epidemiology. 2021 Nov 1;32(6):829-837. doi: 10.1097/EDE.0000000000001410.
3
An interpretable deep-learning model for early prediction of sepsis in the emergency department.
Patterns (N Y). 2021 Jan 19;2(2):100196. doi: 10.1016/j.patter.2020.100196. eCollection 2021 Feb 12.
4
7
The association between health-related quality of life and achievement of personalized symptom goal.
Support Care Cancer. 2020 Oct;28(10):4737-4743. doi: 10.1007/s00520-020-05316-0. Epub 2020 Jan 22.
8
A novel approach for breast cancer prediction using optimized ANN classifier based on big data environment.
Health Care Manag Sci. 2020 Sep;23(3):414-426. doi: 10.1007/s10729-019-09498-w. Epub 2019 Nov 5.
10
The Evolving Uses of "Real-World" Data.
JAMA. 2019 Apr 9;321(14):1359-1360. doi: 10.1001/jama.2019.4064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验