The University of Iowa College of Nursing, Iowa City, IA.
The University of Iowa Tippie College of Business, Iowa City, IA.
JCO Clin Cancer Inform. 2024 Mar;8:e2300039. doi: 10.1200/CCI.23.00039.
Ability to predict symptom severity and progression across treatment trajectories would allow clinicians to provide timely intervention and treatment planning. However, such predictions are difficult because of sparse and inconsistent assessment, and simplistic measures such as the last observed symptom severity are often used. The purpose of this study is to develop a model for predicting future cancer symptom experiences on the basis of past symptom experiences.
We performed a retrospective, longitudinal analysis using records of patients with cancer (n = 208) hospitalized between 2008 and 2014. A long short-term memory (LSTM)-based recurrent neural network, a linear regression, and random forest models were trained on previous symptoms experienced and used to predict future symptom trajectories.
We found that at least one of three tested models (LSTM, linear regression, and random forest) outperform predictions based solely on the previous clinical observation. LSTM models significantly outperformed linear regression and random forest models in predicting nausea ( < .1) and psychosocial status ( < .01). Linear regression outperformed all models when predicting oral health ( < .01), while random forest outperformed all models when predicting mobility ( < .01) and nutrition ( < .01).
We can successfully predict patients' symptom trajectories with a prediction model, built with sparse assessment data, using routinely collected nursing documentation. The results of this project can be applied to better individualize symptom management to support cancer patients' quality of life.
能够预测治疗轨迹中的症状严重程度和进展,将使临床医生能够及时进行干预和治疗规划。然而,由于评估稀疏且不一致,以及通常使用最后观察到的症状严重程度等简单措施,因此此类预测较为困难。本研究旨在基于过去的症状体验,为预测未来的癌症症状体验建立模型。
我们使用 2008 年至 2014 年间住院的癌症患者(n = 208)的记录进行了回顾性、纵向分析。基于先前经历的症状,对基于长短期记忆(LSTM)的递归神经网络、线性回归和随机森林模型进行训练,并用于预测未来的症状轨迹。
我们发现,至少有三种测试模型(LSTM、线性回归和随机森林)中的一种优于仅基于先前临床观察的预测。LSTM 模型在预测恶心(<.1)和心理社会状况(<.01)方面明显优于线性回归和随机森林模型。线性回归在预测口腔健康(<.01)方面优于所有模型,而随机森林在预测移动性(<.01)和营养(<.01)方面优于所有模型。
我们可以成功地使用基于稀疏评估数据构建的预测模型预测患者的症状轨迹,使用常规收集的护理记录。该项目的结果可应用于更好地个体化症状管理,以支持癌症患者的生活质量。