Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, USA.
Department of Applied Mathematics, University of Colorado, Boulder, CO, USA.
Nat Microbiol. 2020 May;5(5):757-767. doi: 10.1038/s41564-020-0684-2. Epub 2020 Mar 23.
Photosynthetic organisms regulate their responses to many diverse stimuli in an effort to balance light harvesting with utilizable light energy for carbon fixation and growth (source-sink regulation). This balance is critical to prevent the formation of reactive oxygen species that can lead to cell death. However, investigating the molecular mechanisms that underlie the regulation of photosynthesis in cyanobacteria using ensemble-based measurements remains a challenge due to population heterogeneity. Here, to address this problem, we used long-term quantitative time-lapse fluorescence microscopy, transmission electron microscopy, mathematical modelling and genetic manipulation to visualize and analyse the growth and subcellular dynamics of individual wild-type and mutant cyanobacterial cells over multiple generations. We reveal that mechanical confinement of actively growing Synechococcus sp. PCC 7002 cells leads to the physical disassociation of phycobilisomes and energetic decoupling from the photosynthetic reaction centres. We suggest that the mechanical regulation of photosynthesis is a critical failsafe that prevents cell expansion when light and nutrients are plentiful, but when space is limiting. These results imply that cyanobacteria must convert a fraction of the available light energy into mechanical energy to overcome frictional forces in the environment, providing insight into the regulation of photosynthesis and how microorganisms navigate their physical environment.
光合生物努力调节它们对多种不同刺激的反应,以平衡光捕获和可利用的光能用于碳固定和生长(源-汇调节)。这种平衡对于防止形成可导致细胞死亡的活性氧至关重要。然而,由于群体异质性,使用基于整体的测量方法来研究蓝细菌光合作用调节的分子机制仍然是一个挑战。在这里,为了解决这个问题,我们使用长期定量时间 lapse 荧光显微镜、透射电子显微镜、数学建模和遗传操作来可视化和分析多个世代中单个野生型和突变型蓝细菌细胞的生长和亚细胞动力学。我们揭示了活跃生长的聚球藻 sp. PCC 7002 细胞的机械限制导致藻胆体的物理分离和与光合反应中心的能量解耦。我们认为,光合作用的机械调节是一种关键的故障安全机制,当光和营养物质充足时,可以防止细胞扩张,但当空间有限时。这些结果表明,当环境中存在摩擦力时,蓝细菌必须将一部分可用光能转化为机械能,以克服环境中的摩擦力,这为我们深入了解光合作用的调节以及微生物如何在其物理环境中导航提供了新的见解。