Suppr超能文献

工程化活材料中革兰氏阴性和革兰氏阳性益生菌的适应性

Adaptations of Gram-Negative and Gram-Positive Probiotic Bacteria in Engineered Living Materials.

作者信息

Tadimarri Varun Sai, Tyagi Tanya Amit, Duong Cao Nguyen, Rasheed Sari, Müller Rolf, Sankaran Shrikrishnan

机构信息

INM - Leibniz Institute for New Materials, Saarland University, Campus D2 2, Saarbrücken 66123, Germany.

Saarland University, Saarbrücken 66123, Germany.

出版信息

ACS Biomater Sci Eng. 2025 Jun 9;11(6):3773-3784. doi: 10.1021/acsbiomaterials.5c00325. Epub 2025 May 13.

Abstract

Encapsulation of microbes in natural or synthetic matrices is a key aspect of engineered living materials, although the influence of such confinement on microbial behavior is poorly understood. A few recent studies have shown that the spatial confinement and mechanical properties of the encapsulating material significantly influence microbial behavior, including growth, metabolism, and gene expression. However, comparative studies within different bacterial species under identical confinement conditions are limited. In this study, Gram-negative Nissle 1917 and Gram-positive WCFS1 were encapsulated in hydrogel matrices, and their growth, metabolic activity, and recombinant gene expression were examined under varying degrees of hydrogel stiffness, achieved by adjusting the polymer concentration and chemical cross-linking. Both bacteria grow from single cells into confined colonies, but more interestingly, in gels, mechanical properties influenced colony growth, size, and morphology, whereas this did not occur in gels. However, with both bacteria, increased matrix stiffness led to higher levels of recombinant protein production within the colonies. By measuring metabolic heat from the bacterial gels using the isothermal microcalorimetry technique, it was inferred that adapts to the mechanical restrictions through multiple metabolic transitions and is significantly affected by the different hydrogel properties. Contrastingly, both of these aspects were not observed with . These results revealed that despite both bacteria being gut-adapted probiotics with similar geometries, mechanical confinement affects them considerably differently. The weaker influence of matrix stiffness on is attributed to its slower growth and thicker cell wall, possibly enabling the generation of higher turgor pressures to overcome restrictive forces under confinement. By providing fundamental insights into the interplay between mechanical forces and bacterial physiology, this work advances our understanding of how matrix properties shape bacterial behavior. The implications of these findings will aid the design of engineered living materials for therapeutic applications.

摘要

将微生物封装在天然或合成基质中是工程化活材料的一个关键方面,尽管这种限制对微生物行为的影响尚不清楚。最近的一些研究表明,封装材料的空间限制和机械性能会显著影响微生物行为,包括生长、代谢和基因表达。然而,在相同限制条件下对不同细菌物种进行的比较研究有限。在本研究中,革兰氏阴性的Nissle 1917和革兰氏阳性的WCFS1被封装在水凝胶基质中,并在通过调整聚合物浓度和化学交联实现的不同程度的水凝胶硬度下,检测它们的生长、代谢活性和重组基因表达。两种细菌都从单细胞生长成受限菌落,但更有趣的是,在凝胶中,机械性能影响菌落的生长、大小和形态,而在凝胶中则没有这种情况。然而,对于两种细菌来说,基质硬度的增加都会导致菌落内重组蛋白产量的提高。通过使用等温微量热法测量细菌凝胶的代谢热,可以推断出通过多种代谢转变适应机械限制,并受到不同水凝胶性质的显著影响。相比之下,在中未观察到这两个方面。这些结果表明,尽管这两种细菌都是具有相似几何形状的肠道适应性益生菌,但机械限制对它们的影响却大不相同。基质硬度对的影响较弱归因于其生长较慢和细胞壁较厚,这可能使其能够产生更高的膨压以克服限制条件下的限制力。通过提供对机械力与细菌生理学之间相互作用的基本见解,这项工作推进了我们对基质性质如何塑造细菌行为的理解。这些发现的意义将有助于设计用于治疗应用的工程化活材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验