Suppr超能文献

纳米粒子超晶格的单晶 Winterbottom 结构。

Single-crystal Winterbottom constructions of nanoparticle superlattices.

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.

The Charles Stark Draper Laboratory, Cambridge, MA, USA.

出版信息

Nat Mater. 2020 Jul;19(7):719-724. doi: 10.1038/s41563-020-0643-6. Epub 2020 Mar 16.

Abstract

Colloidal nanoparticle assembly methods can serve as ideal models to explore the fundamentals of homogeneous crystallization phenomena, as interparticle interactions can be readily tuned to modify crystal nucleation and growth. However, heterogeneous crystallization at interfaces is often more challenging to control, as it requires that both interparticle and particle-surface interactions be manipulated simultaneously. Here, we demonstrate how programmable DNA hybridization enables the formation of single-crystal Winterbottom constructions of substrate-bound nanoparticle superlattices with defined sizes, shapes, orientations and degrees of anisotropy. Additionally, we show that some crystals exhibit deviations from their predicted Winterbottom structures due to an additional growth pathway that is not typically observed in atomic crystals, providing insight into the differences between this model system and other atomic or molecular crystals. By precisely tailoring both interparticle and particle-surface potentials, we therefore can use this model to both understand and rationally control the complex process of interfacial crystallization.

摘要

胶态纳米粒子组装方法可用作探索均相结晶现象基本原理的理想模型,因为可以很容易地调整粒子间相互作用来改变晶体成核和生长。然而,界面上的异质结晶通常更难以控制,因为它需要同时操纵粒子间相互作用和粒子-表面相互作用。在这里,我们展示了可编程 DNA 杂交如何使具有确定尺寸、形状、取向和各向异性程度的基底结合纳米粒子超晶格的单晶 Winterbottom 结构的形成成为可能。此外,我们还表明,由于通常在原子晶体中观察不到的额外生长途径,一些晶体表现出与其预测的 Winterbottom 结构的偏差,从而深入了解该模型系统与其他原子或分子晶体之间的差异。通过精确调整粒子间和粒子-表面的势能,因此我们可以使用该模型来理解和合理控制界面结晶的复杂过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验