Li Hailiang, Niu Jiebin, Zhang Congfen, Niu Gao, Ye Xin, Xie Changqing
Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.
College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
Nanomaterials (Basel). 2020 Mar 19;10(3):552. doi: 10.3390/nano10030552.
In this paper, a theoretical simulation based on a finite-difference time-domain method (FDTD) shows that the solar absorber can reach ultra-broadband and high-efficiency by refractory metals titanium (Ti) and titanium nitride (TiN). In the absorption spectrum of double-size cross-shaped absorber, the absorption bandwidth of more than 90% is 1182 nm (415.648-1597.39 nm). Through the analysis of the field distribution, we know the physical mechanism is the combined action of propagating plasmon resonance and local surface plasmon resonance. After that, the paper has a discussion about the influence of different structure parameters, polarization angle and angle of incident light on the absorptivity of the absorber. At last, the absorption spectrum of the absorber under the standard spectrum of solar radiance Air Mass 1.5 (AM1.5) is studied. The absorber we proposed can be used in solar energy absorber, thermal photovoltaics, hot-electron devices and so on.
本文基于时域有限差分法(FDTD)的理论模拟表明,太阳能吸收器可通过难熔金属钛(Ti)和氮化钛(TiN)实现超宽带和高效吸收。在双尺寸十字形吸收器的吸收光谱中,超过90%的吸收带宽为1182纳米(415.648 - 1597.39纳米)。通过对场分布的分析,我们得知其物理机制是传播表面等离子体共振和局域表面等离子体共振的共同作用。之后,本文讨论了不同结构参数以及偏振角和入射角对吸收器吸收率的影响。最后,研究了该吸收器在空气质量1.5(AM1.5)标准太阳辐射光谱下的吸收光谱。我们提出的吸收器可用于太阳能吸收器、热光伏、热电子器件等领域。