Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7799-7802. doi: 10.1073/pnas.1920840117. Epub 2020 Mar 23.
Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin, and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organized criticality). Dynein has three distinct titled subunits, but how these units connect to function as a molecular motor is mysterious. Dynein binds to tubulin through two coiled coil stalks and a stalk head. The energy used to alter the head binding and propel cargo along tubulin is supplied by ATP at a ring 1,500 amino acids away. Here, we show how many details of this extremely distant interaction are explained by water waves quantified by thermodynamic scaling. Water waves have shaped all proteins throughout positive Darwinian evolution, and many aspects of long-range water-protein interactions are universal (described by self-organized criticality). Dynein water waves resembling tsunami produce nearly optimal energy transport over 1,500 amino acids along dynein's one-dimensional peptide backbone. More specifically, this paper identifies many similarities in the function and evolution of dynein compared to other cytoskeleton proteins such as actin, myosin, and tubulin.
细胞骨架是基于聚合蛋白(肌动蛋白、微管蛋白)形成的自我组织网络,并由驱动蛋白(肌球蛋白、驱动蛋白和动力蛋白)驱动。它们的积极达尔文进化使它们能够接近优化的功能(自我组织临界性)。动力蛋白有三个不同的亚基,但这些亚基如何连接以作为分子马达发挥作用是神秘的。动力蛋白通过两个卷曲螺旋茎和一个茎头与微管蛋白结合。改变头部结合并沿微管蛋白推动货物的能量由远离头部 1500 个氨基酸的环处的 ATP 提供。在这里,我们展示了热力学标度量化的水波如何解释这种极其遥远相互作用的许多细节。水波塑造了整个积极达尔文进化过程中的所有蛋白质,并且长程水-蛋白质相互作用的许多方面是普遍的(由自我组织临界性描述)。类似于海啸的动力蛋白水波在动力蛋白的一维肽骨架上沿 1500 多个氨基酸产生近乎最佳的能量传输。更具体地说,本文比较了动力蛋白与其他细胞骨架蛋白(如肌动蛋白、肌球蛋白和微管蛋白)在功能和进化方面的许多相似之处。