Suppr超能文献

结合对胞质动力蛋白的结构功能与单分子研究

Combining Structure-Function and Single-Molecule Studies on Cytoplasmic Dynein.

作者信息

Rao Lu, Hülsemann Maren, Gennerich Arne

机构信息

Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.

出版信息

Methods Mol Biol. 2018;1665:53-89. doi: 10.1007/978-1-4939-7271-5_4.

Abstract

Cytoplasmic dynein is the largest and most intricate cytoskeletal motor protein. It is responsible for a vast array of biological functions, ranging from the transport of organelles and mRNAs to the movement of nuclei during neuronal migration and the formation and positioning of the mitotic spindle during cell division. Despite its megadalton size and its complex design, recent success with the recombinant expression of the dynein heavy chain has advanced our understanding of dynein's molecular mechanism through the combination of structure-function and single-molecule studies. Single-molecule fluorescence assays have provided detailed insights into how dynein advances along its microtubule track in the absence of load, while optical tweezers have yielded insights into the force generation and stalling behavior of dynein. Here, using the S. cerevisiae expression system, we provide improved protocols for the generation of dynein mutants and for the expression and purification of the mutated and/or tagged proteins. To facilitate single-molecule fluorescence and optical trapping assays, we further describe updated, easy-to-use protocols for attaching microtubules to coverslip surfaces. The presented protocols together with the recently solved crystal structures of the dynein motor domain will further simplify and accelerate hypothesis-driven mutagenesis and structure-function studies on dynein.

摘要

胞质动力蛋白是最大且最复杂的细胞骨架运动蛋白。它负责大量的生物学功能,从细胞器和信使核糖核酸的运输到神经元迁移过程中细胞核的移动,以及细胞分裂过程中有丝分裂纺锤体的形成和定位。尽管其分子量达百万道尔顿且设计复杂,但最近动力蛋白重链的重组表达取得成功,通过结构功能和单分子研究的结合,增进了我们对动力蛋白分子机制的理解。单分子荧光测定法详细揭示了动力蛋白在无负载情况下如何沿着微管轨道前进,而光镊则让我们了解了动力蛋白的力产生和停滞行为。在此,我们利用酿酒酵母表达系统,提供了改进的方案,用于生成动力蛋白突变体以及表达和纯化突变和/或标记的蛋白质。为便于进行单分子荧光和光镊捕获测定,我们进一步描述了更新的、易于使用的将微管附着到盖玻片表面的方案。所展示的方案与最近解析的动力蛋白运动结构域的晶体结构一起,将进一步简化并加速对动力蛋白的假设驱动诱变和结构功能研究。

相似文献

1
Combining Structure-Function and Single-Molecule Studies on Cytoplasmic Dynein.
Methods Mol Biol. 2018;1665:53-89. doi: 10.1007/978-1-4939-7271-5_4.
2
Measurements of the Force-Dependent Detachment Rates of Cytoplasmic Dynein from Microtubules.
Methods Mol Biol. 2023;2623:221-238. doi: 10.1007/978-1-0716-2958-1_14.
3
Probing the force generation and stepping behavior of cytoplasmic Dynein.
Methods Mol Biol. 2011;783:63-80. doi: 10.1007/978-1-61779-282-3_4.
4
The regulatory function of the AAA4 ATPase domain of cytoplasmic dynein.
Nat Commun. 2020 Nov 23;11(1):5952. doi: 10.1038/s41467-020-19477-3.
5
Structural basis for microtubule binding and release by dynein.
Science. 2012 Sep 21;337(6101):1532-1536. doi: 10.1126/science.1224151.
6
Reconstitution of Dynein/Dynactin Transport Using Recombinant Dynein.
Methods Mol Biol. 2023;2623:135-156. doi: 10.1007/978-1-0716-2958-1_9.
7
Molecular mechanism of cytoplasmic dynein tension sensing.
Nat Commun. 2019 Jul 26;10(1):3332. doi: 10.1038/s41467-019-11231-8.
8
Structure and Function of Dynein's Non-Catalytic Subunits.
Cells. 2024 Feb 11;13(4):330. doi: 10.3390/cells13040330.
9
10
Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6371-6. doi: 10.1073/pnas.1417422112. Epub 2015 May 4.

引用本文的文献

1
SLICK: A Sandwich-LIke Culturing Kit for Cryo-ET Sample Preparation.
bioRxiv. 2025 Feb 16:2025.02.14.638381. doi: 10.1101/2025.02.14.638381.
2
Measurements of the Force-Dependent Detachment Rates of Cytoplasmic Dynein from Microtubules.
Methods Mol Biol. 2023;2623:221-238. doi: 10.1007/978-1-0716-2958-1_14.
4
Single-Molecule Studies on the Motion and Force Generation of the Kinesin-3 Motor KIF1A.
Methods Mol Biol. 2022;2478:585-608. doi: 10.1007/978-1-0716-2229-2_21.
5
ALS-linked KIF5A ΔExon27 mutant causes neuronal toxicity through gain-of-function.
EMBO Rep. 2022 Aug 3;23(8):e54234. doi: 10.15252/embr.202154234. Epub 2022 Jun 23.
6
Targeting allostery in the Dynein motor domain with small molecule inhibitors.
Cell Chem Biol. 2021 Oct 21;28(10):1460-1473.e15. doi: 10.1016/j.chembiol.2021.04.024. Epub 2021 May 19.
8
The regulatory function of the AAA4 ATPase domain of cytoplasmic dynein.
Nat Commun. 2020 Nov 23;11(1):5952. doi: 10.1038/s41467-020-19477-3.
9
Force production of human cytoplasmic dynein is limited by its processivity.
Sci Adv. 2020 Apr 8;6(15):eaaz4295. doi: 10.1126/sciadv.aaz4295. eCollection 2020 Apr.
10
Self-organized networks: Darwinian evolution of dynein rings, stalks, and stalk heads.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7799-7802. doi: 10.1073/pnas.1920840117. Epub 2020 Mar 23.

本文引用的文献

1
Congenital Cataracts and Gut Dysmotility in a DYNC1H1 Dyneinopathy Patient.
Genes (Basel). 2016 Oct 14;7(10):85. doi: 10.3390/genes7100085.
2
A novel DYNC1H1 mutation causing spinal muscular atrophy with lower extremity predominance.
Neurol Genet. 2015 Jul 16;1(2):e20. doi: 10.1212/NXG.0000000000000017. eCollection 2015 Aug.
3
Review: Structure and mechanism of the dynein motor ATPase.
Biopolymers. 2016 Aug;105(8):557-67. doi: 10.1002/bip.22856.
4
Tyrosination of α-tubulin controls the initiation of processive dynein-dynactin motility.
EMBO J. 2016 Jun 1;35(11):1175-85. doi: 10.15252/embj.201593071. Epub 2016 Mar 11.
6
Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling.
Nat Struct Mol Biol. 2016 Jan;23(1):37-44. doi: 10.1038/nsmb.3132. Epub 2015 Nov 30.
7
Mechanism and regulation of cytoplasmic dynein.
Annu Rev Cell Dev Biol. 2015;31:83-108. doi: 10.1146/annurev-cellbio-100814-125438. Epub 2015 Sep 30.
8
Total Internal Reflection Fluorescence Microscopy.
Cold Spring Harb Protoc. 2015 Sep 1;2015(9):pdb.top086348. doi: 10.1101/pdb.top086348.
9
Tracking Movements of the Microtubule Motors Kinesin and Dynein Using Total Internal Reflection Fluorescence Microscopy.
Cold Spring Harb Protoc. 2015 Sep 1;2015(9):pdb.prot086355. doi: 10.1101/pdb.prot086355.
10
Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1.
J Neurol. 2015 Sep;262(9):2124-34. doi: 10.1007/s00415-015-7727-2. Epub 2015 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验