Rao Lu, Hülsemann Maren, Gennerich Arne
Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
Methods Mol Biol. 2018;1665:53-89. doi: 10.1007/978-1-4939-7271-5_4.
Cytoplasmic dynein is the largest and most intricate cytoskeletal motor protein. It is responsible for a vast array of biological functions, ranging from the transport of organelles and mRNAs to the movement of nuclei during neuronal migration and the formation and positioning of the mitotic spindle during cell division. Despite its megadalton size and its complex design, recent success with the recombinant expression of the dynein heavy chain has advanced our understanding of dynein's molecular mechanism through the combination of structure-function and single-molecule studies. Single-molecule fluorescence assays have provided detailed insights into how dynein advances along its microtubule track in the absence of load, while optical tweezers have yielded insights into the force generation and stalling behavior of dynein. Here, using the S. cerevisiae expression system, we provide improved protocols for the generation of dynein mutants and for the expression and purification of the mutated and/or tagged proteins. To facilitate single-molecule fluorescence and optical trapping assays, we further describe updated, easy-to-use protocols for attaching microtubules to coverslip surfaces. The presented protocols together with the recently solved crystal structures of the dynein motor domain will further simplify and accelerate hypothesis-driven mutagenesis and structure-function studies on dynein.
胞质动力蛋白是最大且最复杂的细胞骨架运动蛋白。它负责大量的生物学功能,从细胞器和信使核糖核酸的运输到神经元迁移过程中细胞核的移动,以及细胞分裂过程中有丝分裂纺锤体的形成和定位。尽管其分子量达百万道尔顿且设计复杂,但最近动力蛋白重链的重组表达取得成功,通过结构功能和单分子研究的结合,增进了我们对动力蛋白分子机制的理解。单分子荧光测定法详细揭示了动力蛋白在无负载情况下如何沿着微管轨道前进,而光镊则让我们了解了动力蛋白的力产生和停滞行为。在此,我们利用酿酒酵母表达系统,提供了改进的方案,用于生成动力蛋白突变体以及表达和纯化突变和/或标记的蛋白质。为便于进行单分子荧光和光镊捕获测定,我们进一步描述了更新的、易于使用的将微管附着到盖玻片表面的方案。所展示的方案与最近解析的动力蛋白运动结构域的晶体结构一起,将进一步简化并加速对动力蛋白的假设驱动诱变和结构功能研究。