Suppr超能文献

转录基因的经典非同源末端连接介导修复缺陷与 SCA3 发病机制有关。

Deficiency in classical nonhomologous end-joining-mediated repair of transcribed genes is linked to SCA3 pathogenesis.

机构信息

Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Medical Branch, Galveston, TX 77555.

Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX 77030.

出版信息

Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8154-8165. doi: 10.1073/pnas.1917280117. Epub 2020 Mar 23.

Abstract

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 () gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3'-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3'-phosphate-containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3's role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressing larval brains and eyes. Importantly, SCA3 phenotype in was completely amenable to PNKP complementation. Hence, salvaging PNKP's activity can be a promising therapeutic strategy for SCA3.

摘要

脊髓小脑性共济失调 3 型(SCA3)是一种显性遗传性神经退行性疾病,由 Ataxin-3()基因中的 CAG(编码谷氨酰胺)重复扩展引起。我们之前已经表明,ATXN3 缺失或致病性 ATXN3 表达的细胞会废除多核苷酸激酶 3'-磷酸酶(PNKP)活性。在这里,我们报告 ATXN3 与 RNA 聚合酶 II(RNAP II)和经典的非同源末端连接(C-NHEJ)蛋白,包括 PNKP,以及生理条件下的新生 RNA 相关。值得注意的是,ATXN3 缺失显著降低了全局转录、转录基因的修复以及含有 3'-磷酸的末端缺口、线性化报告质粒的无错误双链断裂修复。在对照细胞中,通过使用内源性同源转录物作为模板,在重新环化的质粒中恢复了末端断裂部位缺失的序列,表明 ATXN3 在 PNKP 介导的无错误 C-NHEJ 中的作用。此外,SCA3 患者和小鼠的脑提取物显示 PNKP 活性显著降低,p53BP1 水平升高,转录基因中的断裂更多,以及相对于对照的 RNAP II 降解。在突变型 ATXN3 表达的 幼虫大脑和眼睛中也明显存在类似的 RNAP II 降解。重要的是,在 中,SCA3 表型完全可以通过 PNKP 互补来改善。因此,挽救 PNKP 的活性可能是治疗 SCA3 的一种有前途的策略。

相似文献

引用本文的文献

6
Ubiquitin system mutations in neurological diseases.泛素系统突变与神经疾病。
Trends Biochem Sci. 2024 Oct;49(10):875-887. doi: 10.1016/j.tibs.2024.06.011. Epub 2024 Jul 6.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验