Suppr超能文献

利用深度学习概率图增强胸部X光片解读

Augmenting Interpretation of Chest Radiographs With Deep Learning Probability Maps.

作者信息

Hurt Brian, Yen Andrew, Kligerman Seth, Hsiao Albert

机构信息

Department of Radiology, University of California San Diego, La Jolla, CA.

出版信息

J Thorac Imaging. 2020 Sep;35(5):285-293. doi: 10.1097/RTI.0000000000000505.

Abstract

PURPOSE

Pneumonia is a common clinical diagnosis for which chest radiographs are often an important part of the diagnostic workup. Deep learning has the potential to expedite and improve the clinical interpretation of chest radiographs. While earlier approaches have emphasized the feasibility of "binary classification" to accomplish this task, alternative strategies may be possible. We explore the feasibility of a "semantic segmentation" deep learning approach to highlight the potential foci of pneumonia on frontal chest radiographs.

MATERIALS AND METHODS

In this retrospective study, we trained a U-net convolutional neural network (CNN) to predict pixel-wise probability maps for pneumonia using a public data set provided by the Radiological Society of North America (RSNA) comprised of 22,000 radiographs and radiologist-defined bounding boxes. We reserved 3684 radiographs as an independent validation data set and assessed overall performance for localization using Dice overlap and classification performance using the area under the receiver-operator characteristic curve.

RESULTS

For classification/detection of pneumonia, area under the receiver-operator characteristic curve on frontal radiographs was 0.854 with a sensitivity of 82.8% and specificity of 72.6%. Using this strategy of neural network training, probability maps localized pneumonia to lung parenchyma for essentially all validation cases. For segmentation of pneumonia for positive cases, predicted probability maps had a mean Dice score (±SD) of 0.603±0.204, and 60.0% of these had a Dice score >0.5.

CONCLUSIONS

A "semantic segmentation" deep learning approach can provide a probabilistic map to assist in the diagnosis of pneumonia. In combination with the patient's history, clinical findings and other imaging, this strategy may help expedite and improve diagnosis.

摘要

目的

肺炎是一种常见的临床诊断疾病,胸部X光片通常是诊断检查的重要组成部分。深度学习有潜力加快并改善胸部X光片的临床解读。虽然早期方法强调通过“二元分类”来完成这项任务的可行性,但也可能有其他策略。我们探讨一种“语义分割”深度学习方法在正位胸部X光片上突出肺炎潜在病灶的可行性。

材料与方法

在这项回顾性研究中,我们使用北美放射学会(RSNA)提供的包含22000张X光片和放射科医生定义的边界框的公共数据集,训练了一个U型卷积神经网络(CNN)来预测肺炎的逐像素概率图。我们预留3684张X光片作为独立验证数据集,并使用Dice重叠评估定位的整体性能,使用接收者操作特征曲线下面积评估分类性能。

结果

对于肺炎的分类/检测,正位X光片的接收者操作特征曲线下面积为0.854,灵敏度为82.8%,特异性为72.6%。使用这种神经网络训练策略,概率图将肺炎定位到基本上所有验证病例的肺实质。对于阳性病例的肺炎分割,预测概率图的平均Dice分数(±标准差)为0.603±0.204,其中60.0%的Dice分数>0.5。

结论

一种“语义分割”深度学习方法可以提供概率图以辅助肺炎诊断。结合患者病史、临床发现和其他影像学检查,这种策略可能有助于加快并改善诊断。

相似文献

1
Augmenting Interpretation of Chest Radiographs With Deep Learning Probability Maps.
J Thorac Imaging. 2020 Sep;35(5):285-293. doi: 10.1097/RTI.0000000000000505.
3
Diagnosis of Coronavirus Disease 2019 Pneumonia by Using Chest Radiography: Value of Artificial Intelligence.
Radiology. 2021 Feb;298(2):E88-E97. doi: 10.1148/radiol.2020202944. Epub 2020 Sep 24.
4
Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists.
PLoS Med. 2018 Nov 20;15(11):e1002686. doi: 10.1371/journal.pmed.1002686. eCollection 2018 Nov.
5
Deep learning to detect acute respiratory distress syndrome on chest radiographs: a retrospective study with external validation.
Lancet Digit Health. 2021 Jun;3(6):e340-e348. doi: 10.1016/S2589-7500(21)00056-X. Epub 2021 Apr 20.
7
Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study.
PLoS Med. 2018 Nov 6;15(11):e1002683. doi: 10.1371/journal.pmed.1002683. eCollection 2018 Nov.
9
Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images.
Br J Radiol. 2021 May 1;94(1121):20201263. doi: 10.1259/bjr.20201263. Epub 2021 Apr 16.
10
Optimal matrix size of chest radiographs for computer-aided detection on lung nodule or mass with deep learning.
Eur Radiol. 2020 Sep;30(9):4943-4951. doi: 10.1007/s00330-020-06892-9. Epub 2020 Apr 29.

引用本文的文献

2
AI-based radiodiagnosis using chest X-rays: A review.
Front Big Data. 2023 Apr 6;6:1120989. doi: 10.3389/fdata.2023.1120989. eCollection 2023.
3
Performance and Usability of Code-Free Deep Learning for Chest Radiograph Classification, Object Detection, and Segmentation.
Radiol Artif Intell. 2023 Feb 15;5(2):e220062. doi: 10.1148/ryai.220062. eCollection 2023 Mar.
5
A 178-clinical-center experiment of integrating AI solutions for lung pathology diagnosis.
Sci Rep. 2023 Jan 20;13(1):1135. doi: 10.1038/s41598-023-27397-7.
7
Chest radiographs and machine learning - Past, present and future.
J Med Imaging Radiat Oncol. 2021 Aug;65(5):538-544. doi: 10.1111/1754-9485.13274. Epub 2021 Jun 25.
8
Deployment of artificial intelligence for radiographic diagnosis of COVID-19 pneumonia in the emergency department.
J Am Coll Emerg Physicians Open. 2020 Nov 5;1(6):1459-1464. doi: 10.1002/emp2.12297. eCollection 2020 Dec.
10
Deep Learning Localization of Pneumonia: 2019 Coronavirus (COVID-19) Outbreak.
J Thorac Imaging. 2020 May;35(3):W87-W89. doi: 10.1097/RTI.0000000000000512.

本文引用的文献

1
Augmenting the National Institutes of Health Chest Radiograph Dataset with Expert Annotations of Possible Pneumonia.
Radiol Artif Intell. 2019 Jan 30;1(1):e180041. doi: 10.1148/ryai.2019180041. eCollection 2019 Jan.
2
Automated CT and MRI Liver Segmentation and Biometry Using a Generalized Convolutional Neural Network.
Radiol Artif Intell. 2019 Mar;1(2). doi: 10.1148/ryai.2019180022. Epub 2019 Mar 27.
3
Machine Learning and Deep Neural Networks in Thoracic and Cardiovascular Imaging.
J Thorac Imaging. 2019 May;34(3):192-201. doi: 10.1097/RTI.0000000000000385.
4
How far have we come? Artificial intelligence for chest radiograph interpretation.
Clin Radiol. 2019 May;74(5):338-345. doi: 10.1016/j.crad.2018.12.015. Epub 2019 Jan 28.
5
6
Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists.
PLoS Med. 2018 Nov 20;15(11):e1002686. doi: 10.1371/journal.pmed.1002686. eCollection 2018 Nov.
7
Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study.
PLoS Med. 2018 Nov 6;15(11):e1002683. doi: 10.1371/journal.pmed.1002683. eCollection 2018 Nov.
8
Deep Learning-A Technology With the Potential to Transform Health Care.
JAMA. 2018 Sep 18;320(11):1101-1102. doi: 10.1001/jama.2018.11100.
9
Deep Learning in Radiology: Does One Size Fit All?
J Am Coll Radiol. 2018 Mar;15(3 Pt B):521-526. doi: 10.1016/j.jacr.2017.12.027. Epub 2018 Jan 31.
10
Brain tumor segmentation using holistically nested neural networks in MRI images.
Med Phys. 2017 Oct;44(10):5234-5243. doi: 10.1002/mp.12481. Epub 2017 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验