Suppr超能文献

利用胸部 X 线摄影诊断 2019 年冠状病毒病肺炎:人工智能的价值。

Diagnosis of Coronavirus Disease 2019 Pneumonia by Using Chest Radiography: Value of Artificial Intelligence.

机构信息

From the Departments of Medical Physics (R.Z., X.T., C.Z., D.G., J.W.G., K.L., S.B.R., G.H.C.) and Radiology (M.L.S., J.W.G., K.L., S.B.R., G.H.C.), University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705; and Department of Radiology, Henry Ford Health System, Detroit, Mich (Z.Q., N.B.B., T.K.S., J.D.N,).

出版信息

Radiology. 2021 Feb;298(2):E88-E97. doi: 10.1148/radiol.2020202944. Epub 2020 Sep 24.

Abstract

Background Radiologists are proficient in differentiating between chest radiographs with and without symptoms of pneumonia but have found it more challenging to differentiate coronavirus disease 2019 (COVID-19) pneumonia from non-COVID-19 pneumonia on chest radiographs. Purpose To develop an artificial intelligence algorithm to differentiate COVID-19 pneumonia from other causes of abnormalities at chest radiography. Materials and Methods In this retrospective study, a deep neural network, CV19-Net, was trained, validated, and tested on chest radiographs in patients with and without COVID-19 pneumonia. For the chest radiographs positive for COVID-19, patients with reverse transcription polymerase chain reaction results positive for severe acute respiratory syndrome coronavirus 2 with findings positive for pneumonia between February 1, 2020, and May 30, 2020, were included. For the non-COVID-19 chest radiographs, patients with pneumonia who underwent chest radiography between October 1, 2019, and December 31, 2019, were included. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were calculated to characterize diagnostic performance. To benchmark the performance of CV19-Net, a randomly sampled test data set composed of 500 chest radiographs in 500 patients was evaluated by the CV19-Net and three experienced thoracic radiologists. Results A total of 2060 patients (5806 chest radiographs; mean age, 62 years ± 16 [standard deviation]; 1059 men) with COVID-19 pneumonia and 3148 patients (5300 chest radiographs; mean age, 64 years ± 18; 1578 men) with non-COVID-19 pneumonia were included and split into training and validation and test data sets. For the test set, CV19-Net achieved an AUC of 0.92 (95% CI: 0.91, 0.93). This corresponded to a sensitivity of 88% (95% CI: 87, 89) and a specificity of 79% (95% CI: 77, 80) by using a high-sensitivity operating threshold, or a sensitivity of 78% (95% CI: 77, 79) and a specificity of 89% (95% CI: 88, 90) by using a high-specificity operating threshold. For the 500 sampled chest radiographs, CV19-Net achieved an AUC of 0.94 (95% CI: 0.93, 0.96) compared with an AUC of 0.85 (95% CI: 0.81, 0.88) achieved by radiologists. Conclusion CV19-Net was able to differentiate coronavirus disease 2019-related pneumonia from other types of pneumonia, with performance exceeding that of experienced thoracic radiologists. © RSNA, 2021

摘要

背景 放射科医生擅长区分有和无症状肺炎的胸部 X 光片,但在区分新冠肺炎(COVID-19)肺炎与非 COVID-19 肺炎的胸部 X 光片方面,他们发现更具挑战性。

目的 开发一种人工智能算法,以区分 COVID-19 肺炎与其他胸部 X 光异常的原因。

材料和方法 本回顾性研究中,一种名为 CV19-Net 的深度神经网络在有和无 COVID-19 肺炎的患者的胸部 X 光片中进行了训练、验证和测试。对于 COVID-19 阳性的胸部 X 光片,包括 2020 年 2 月 1 日至 5 月 30 日之间严重急性呼吸综合征冠状病毒 2 逆转录聚合酶链反应结果阳性且存在肺炎的患者。对于非 COVID-19 胸部 X 光片,包括 2019 年 10 月 1 日至 12 月 31 日之间进行胸部 X 光检查的肺炎患者。计算接受者操作特征曲线(ROC)下面积(AUC)、敏感性和特异性,以描述诊断性能。为了评估 CV19-Net 的性能,使用 500 名患者的 500 张胸部 X 光片的随机抽样测试数据集对 CV19-Net 和三名经验丰富的胸部放射科医生进行了评估。

结果 共纳入 2060 名 COVID-19 肺炎患者(5806 张胸部 X 光片;平均年龄 62 岁±16 [标准差];1059 名男性)和 3148 名非 COVID-19 肺炎患者(5300 张胸部 X 光片;平均年龄 64 岁±18;1578 名男性),并将其分为训练、验证和测试数据集。对于测试集,CV19-Net 的 AUC 为 0.92(95%CI:0.91,0.93)。这对应于高灵敏度操作阈值下的 88%(95%CI:87,89)敏感性和 79%(95%CI:77,80)特异性,或高特异性操作阈值下的 78%(95%CI:77,79)敏感性和 89%(95%CI:88,90)特异性。对于 500 张抽样的胸部 X 光片,CV19-Net 的 AUC 为 0.94(95%CI:0.93,0.96),而放射科医生的 AUC 为 0.85(95%CI:0.81,0.88)。

结论 CV19-Net 能够区分 COVID-19 相关肺炎与其他类型的肺炎,其性能优于经验丰富的胸部放射科医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed4b/7841876/9dc7baf1ffde/radiol.2020202944.fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验