I-MED Radiology Network, Brisbane, Queensland, Australia.
Annalise.ai, Sydney, New South Wales, Australia.
J Med Imaging Radiat Oncol. 2021 Aug;65(5):538-544. doi: 10.1111/1754-9485.13274. Epub 2021 Jun 25.
Despite its simple acquisition technique, the chest X-ray remains the most common first-line imaging tool for chest assessment globally. Recent evidence for image analysis using modern machine learning points to possible improvements in both the efficiency and the accuracy of chest X-ray interpretation. While promising, these machine learning algorithms have not provided comprehensive assessment of findings in an image and do not account for clinical history or other relevant clinical information. However, the rapid evolution in technology and evidence base for its use suggests that the next generation of comprehensive, well-tested machine learning algorithms will be a revolution akin to early advances in X-ray technology. Current use cases, strengths, limitations and applications of chest X-ray machine learning systems are discussed.
尽管获取技术简单,但胸部 X 射线仍然是目前全球范围内胸部评估最常用的一线影像学工具。最近使用现代机器学习进行图像分析的证据表明,胸部 X 射线解读的效率和准确性可能会得到提高。虽然很有前景,但这些机器学习算法并未全面评估图像中的发现,也未考虑临床病史或其他相关临床信息。然而,技术的快速发展以及其使用的证据基础表明,下一代全面、经过充分测试的机器学习算法将是一场类似于 X 射线技术早期进步的革命。本文讨论了胸部 X 射线机器学习系统的当前用例、优势、局限性和应用。