Suppr超能文献

胸部 X 光片与机器学习:过去、现在与未来。

Chest radiographs and machine learning - Past, present and future.

机构信息

I-MED Radiology Network, Brisbane, Queensland, Australia.

Annalise.ai, Sydney, New South Wales, Australia.

出版信息

J Med Imaging Radiat Oncol. 2021 Aug;65(5):538-544. doi: 10.1111/1754-9485.13274. Epub 2021 Jun 25.

Abstract

Despite its simple acquisition technique, the chest X-ray remains the most common first-line imaging tool for chest assessment globally. Recent evidence for image analysis using modern machine learning points to possible improvements in both the efficiency and the accuracy of chest X-ray interpretation. While promising, these machine learning algorithms have not provided comprehensive assessment of findings in an image and do not account for clinical history or other relevant clinical information. However, the rapid evolution in technology and evidence base for its use suggests that the next generation of comprehensive, well-tested machine learning algorithms will be a revolution akin to early advances in X-ray technology. Current use cases, strengths, limitations and applications of chest X-ray machine learning systems are discussed.

摘要

尽管获取技术简单,但胸部 X 射线仍然是目前全球范围内胸部评估最常用的一线影像学工具。最近使用现代机器学习进行图像分析的证据表明,胸部 X 射线解读的效率和准确性可能会得到提高。虽然很有前景,但这些机器学习算法并未全面评估图像中的发现,也未考虑临床病史或其他相关临床信息。然而,技术的快速发展以及其使用的证据基础表明,下一代全面、经过充分测试的机器学习算法将是一场类似于 X 射线技术早期进步的革命。本文讨论了胸部 X 射线机器学习系统的当前用例、优势、局限性和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6306/8453538/5793eb9b8e3b/ARA-65-538-g001.jpg

相似文献

1
Chest radiographs and machine learning - Past, present and future.
J Med Imaging Radiat Oncol. 2021 Aug;65(5):538-544. doi: 10.1111/1754-9485.13274. Epub 2021 Jun 25.
2
Assessment of an ensemble of machine learning models toward abnormality detection in chest radiographs.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3689-3692. doi: 10.1109/EMBC.2019.8856715.
4
Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.
Radiol Phys Technol. 2017 Mar;10(1):23-32. doi: 10.1007/s12194-017-0394-5. Epub 2017 Feb 16.
5
A learning-based material decomposition pipeline for multi-energy x-ray imaging.
Med Phys. 2019 Feb;46(2):689-703. doi: 10.1002/mp.13317. Epub 2018 Dec 24.
6
Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.
Int J Comput Assist Radiol Surg. 2017 Feb;12(2):245-261. doi: 10.1007/s11548-016-1492-2. Epub 2016 Oct 28.
7
Simplified Transfer Learning for Chest Radiography Models Using Less Data.
Radiology. 2022 Nov;305(2):454-465. doi: 10.1148/radiol.212482. Epub 2022 Jul 19.

引用本文的文献

1
Designing a computer-assisted diagnosis system for cardiomegaly detection and radiology report generation.
PLOS Digit Health. 2025 May 20;4(5):e0000835. doi: 10.1371/journal.pdig.0000835. eCollection 2025 May.
2
Quality Assessment of Plain Chest X-Rays of the Expatriates in Jordan: Multi-Centres Study.
Risk Manag Healthc Policy. 2025 Mar 20;18:933-945. doi: 10.2147/RMHP.S507002. eCollection 2025.
3
AI-assisted detection for chest X-rays (AID-CXR): a multi-reader multi-case study protocol.
BMJ Open. 2024 Dec 20;14(12):e080554. doi: 10.1136/bmjopen-2023-080554.
7
Artificial Intelligence-Based Software with CE Mark for Chest X-ray Interpretation: Opportunities and Challenges.
Diagnostics (Basel). 2023 Jun 10;13(12):2020. doi: 10.3390/diagnostics13122020.
8
Machine Learning Augmented Interpretation of Chest X-rays: A Systematic Review.
Diagnostics (Basel). 2023 Feb 15;13(4):743. doi: 10.3390/diagnostics13040743.
9
Neural networks for classification of cervical vertebrae maturation: a systematic review.
Angle Orthod. 2022 Nov 1;92(6):796-804. doi: 10.2319/031022-210.1.

本文引用的文献

1
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
4
Smart chest X-ray worklist prioritization using artificial intelligence: a clinical workflow simulation.
Eur Radiol. 2021 Jun;31(6):3837-3845. doi: 10.1007/s00330-020-07480-7. Epub 2020 Nov 21.
5
Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging.
Proc ACM Conf Health Inference Learn (2020). 2020 Apr;2020:151-159. doi: 10.1145/3368555.3384468.
6
Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.
JAMA Netw Open. 2020 Oct 1;3(10):e2022779. doi: 10.1001/jamanetworkopen.2020.22779.
8
The myth of generalisability in clinical research and machine learning in health care.
Lancet Digit Health. 2020 Sep;2(9):e489-e492. doi: 10.1016/S2589-7500(20)30186-2. Epub 2020 Aug 24.
9
Ethical thinking machines in surgery and the requirement for clinical leadership.
Am J Surg. 2020 Nov;220(5):1372-1374. doi: 10.1016/j.amjsurg.2020.06.073. Epub 2020 Jul 8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验