Mery Adrien, Chenavier Yves, Marcucci Coralie, Benayad Anass, Alper John P, Dubois Lionel, Haon Cédric, Boime Nathalie Herlin, Sadki Saïd, Duclairoir Florence
Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France.
Université Grenoble Alpes, CEA, LITEN, DTNM, F-38054 Grenoble, France.
Materials (Basel). 2023 Mar 19;16(6):2451. doi: 10.3390/ma16062451.
Using Si as anode materials for Li-ion batteries remain challenging due to its morphological evolution and SEI modification upon cycling. The present work aims at developing a composite consisting of carbon-coated Si nanoparticles (Si@C NPs) intimately embedded in a three-dimensional (3D) graphene hydrogel (GHG) architecture to stabilize Si inside LiB electrodes. Instead of simply mixing both components, the novelty of the synthesis procedure lies in the in situ hydrothermal process, which was shown to successfully yield graphene oxide reduction, 3D graphene assembly production, and homogeneous distribution of Si@C NPs in the GHG matrix. Electrochemical characterizations in half-cells, on electrodes not containing additional conductive additive, revealed the importance of the protective C shell to achieve high specific capacity (up to 2200 mAh.g), along with good stability (200 cycles with an average Ceff > 99%). These performances are far superior to that of electrodes made with non-C-coated Si NPs or prepared by mixing both components. These observations highlight the synergetic effects of C shell on Si NPs, and of the single-step in situ preparation that enables the yield of a Si@C-GHG hybrid composite with physicochemical, structural, and morphological properties promoting sample conductivity and Li-ion diffusion pathways.
由于硅在循环过程中的形态演变和固体电解质界面(SEI)改性,将硅用作锂离子电池的负极材料仍然具有挑战性。目前的工作旨在开发一种复合材料,该复合材料由紧密嵌入三维(3D)石墨烯水凝胶(GHG)结构中的碳包覆硅纳米颗粒(Si@C NPs)组成,以稳定锂离子电池电极中的硅。合成过程的新颖之处不在于简单地混合这两种成分,而在于原位水热过程,该过程已被证明能成功实现氧化石墨烯的还原、3D石墨烯组装体的制备以及Si@C NPs在GHG基质中的均匀分布。在不含额外导电添加剂的电极上进行的半电池电化学表征表明,保护性碳壳对于实现高比容量(高达2200 mAh·g)以及良好的稳定性(200次循环,平均库仑效率>99%)至关重要。这些性能远远优于由未包覆碳的硅纳米颗粒制成的电极或通过混合这两种成分制备的电极。这些观察结果突出了碳壳对硅纳米颗粒的协同作用,以及单步原位制备能够得到具有促进样品导电性和锂离子扩散途径的物理化学、结构和形态特性的Si@C-GHG杂化复合材料。