Suppr超能文献

通过受激辐射实现的仲氢诱导的辐射放大。

Parahydrogen-Induced Radio Amplification by Stimulated Emission of Radiation.

作者信息

Joalland Baptiste, Ariyasingha Nuwandi M, Lehmkuhl Sören, Theis Thomas, Appelt Stephan, Chekmenev Eduard Y

机构信息

Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA.

Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA.

出版信息

Angew Chem Int Ed Engl. 2020 May 25;59(22):8654-8660. doi: 10.1002/anie.201916597. Epub 2020 Mar 24.

Abstract

Radio amplification by stimulated emission of radiation (RASER) was recently discovered in a low-field NMR spectrometer incorporating a highly specialized radio-frequency resonator, where a high degree of proton-spin polarization was achieved by reversible parahydrogen exchange. RASER activity, which results from the coherent coupling between the nuclear spins and the inductive detector, can overcome the limits of frequency resolution in NMR. Here we show that this phenomenon is not limited to low magnetic fields or the use of resonators with high-quality factors. We use a commercial bench-top 1.4 T NMR spectrometer in conjunction with pairwise parahydrogen addition producing proton-hyperpolarized molecules in the Earth's magnetic field (ALTADENA condition) or in a high magnetic field (PASADENA condition) to induce RASER without any radio-frequency excitation pulses. The results demonstrate that RASER activity can be observed on virtually any NMR spectrometer and measures most of the important NMR parameters with high precision.

摘要

最近,在一台配备高度专业化射频谐振器的低场核磁共振光谱仪中发现了受激辐射无线电放大(RASER)现象,在该光谱仪中,通过可逆仲氢交换实现了高度的质子自旋极化。RASER活性源于核自旋与感应探测器之间的相干耦合,它可以克服核磁共振中频率分辨率的限制。在此,我们表明这一现象并不局限于低磁场或使用高品质因数的谐振器。我们使用一台商用台式1.4 T核磁共振光谱仪,结合成对添加仲氢,在地球磁场(ALTADENA条件)或高磁场(PASADENA条件)下产生质子超极化分子,无需任何射频激发脉冲即可诱导RASER。结果表明,几乎在任何核磁共振光谱仪上都能观察到RASER活性,并且能高精度测量大多数重要的核磁共振参数。

相似文献

1
Parahydrogen-Induced Radio Amplification by Stimulated Emission of Radiation.
Angew Chem Int Ed Engl. 2020 May 25;59(22):8654-8660. doi: 10.1002/anie.201916597. Epub 2020 Mar 24.
2
Through-bond and through-space radiofrequency amplification by stimulated emission of radiation.
Commun Chem. 2024 Oct 16;7(1):235. doi: 10.1038/s42004-024-01313-0.
4
The Steady-State ALTADENA RASER Generates Continuous NMR Signals.
Chemphyschem. 2023 Jul 17;24(14):e202300204. doi: 10.1002/cphc.202300204. Epub 2023 Jun 12.
5
SABRE and PHIP pumped RASER and the route to chaos.
J Magn Reson. 2021 Jan;322:106815. doi: 10.1016/j.jmr.2020.106815. Epub 2020 Aug 28.
6
Parahydrogen-Induced Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation.
Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202215678. doi: 10.1002/anie.202215678. Epub 2022 Dec 19.
7
Background-Free Proton NMR Spectroscopy with Radiofrequency Amplification by Stimulated Emission Radiation.
Angew Chem Int Ed Engl. 2021 Dec 6;60(50):26298-26302. doi: 10.1002/anie.202108939. Epub 2021 Oct 1.
10
Transfer of parahydrogen-induced hyperpolarization to 19F.
J Phys Chem A. 2006 Mar 16;110(10):3521-6. doi: 10.1021/jp056219n.

引用本文的文献

1
Spontaneous increasing of sensitivity and resolution in parahydrogen-induced hyperpolarization by RASER.
Magn Reson Lett. 2024 May 24;5(1):200137. doi: 10.1016/j.mrl.2024.200137. eCollection 2025 Feb.
2
Through-bond and through-space radiofrequency amplification by stimulated emission of radiation.
Commun Chem. 2024 Oct 16;7(1):235. doi: 10.1038/s42004-024-01313-0.
3
Toward Ultra-High-Quality-Factor Wireless Masing Magnetic Resonance Sensing.
Angew Chem Int Ed Engl. 2024 Sep 9;63(37):e202406551. doi: 10.1002/anie.202406551. Epub 2024 Jul 12.
4
Metal-Mediated Catalytic Polarization Transfer from Hydrogen to 3,5-Dihalogenated Pyridines.
ACS Catal. 2024 Jan 5;14(2):994-1004. doi: 10.1021/acscatal.3c05378. eCollection 2024 Jan 19.
6
C Radiofrequency Amplification by Stimulated Emission of Radiation Threshold Sensing of Chemical Reactions.
J Am Chem Soc. 2023 May 24;145(20):11121-11129. doi: 10.1021/jacs.3c00776. Epub 2023 May 12.
7
Spin Hyperpolarization in Modern Magnetic Resonance.
Chem Rev. 2023 Feb 22;123(4):1417-1551. doi: 10.1021/acs.chemrev.2c00534. Epub 2023 Jan 26.
8
Parahydrogen-Induced Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation.
Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202215678. doi: 10.1002/anie.202215678. Epub 2022 Dec 19.
9

本文引用的文献

1
Pulse-Programmable Magnetic Field Sweeping of Parahydrogen-Induced Polarization by Side Arm Hydrogenation.
Anal Chem. 2020 Jan 7;92(1):1340-1345. doi: 10.1021/acs.analchem.9b04501. Epub 2019 Dec 23.
2
From LASER physics to the para-hydrogen pumped RASER.
Prog Nucl Magn Reson Spectrosc. 2019 Oct-Dec;114-115:1-32. doi: 10.1016/j.pnmrs.2019.05.003. Epub 2019 May 28.
3
Parahydrogen-Induced Polarization of 1-C-Acetates and 1-C-Pyruvates Using Sidearm Hydrogenation of Vinyl, Allyl, and Propargyl Esters.
J Phys Chem C Nanomater Interfaces. 2019 May 23;123(20):12827-12840. doi: 10.1021/acs.jpcc.9b02041. Epub 2019 Apr 19.
4
Over 50 % H and C Polarization for Generating Hyperpolarized Metabolites-A -Hydrogen Approach.
ChemistryOpen. 2018 Jul 13;7(9):672-676. doi: 10.1002/open.201800086. eCollection 2018 Sep.
6
Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques.
Chem Asian J. 2018 May 23. doi: 10.1002/asia.201800551.
7
Pulsed Magnetic Resonance to Signal-Enhance Metabolites within Seconds by utilizing -Hydrogen.
ChemistryOpen. 2018 May 8;7(5):344-348. doi: 10.1002/open.201800024. eCollection 2018 May.
8
Parahydrogen-Based Hyperpolarization for Biomedicine.
Angew Chem Int Ed Engl. 2018 Aug 27;57(35):11140-11162. doi: 10.1002/anie.201711842. Epub 2018 Aug 1.
9
Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate.
J Magn Reson. 2018 Apr;289:12-17. doi: 10.1016/j.jmr.2018.01.019. Epub 2018 Jan 31.
10
Hyperpolarized [1-C]-acetate Renal Metabolic Clearance Rate Mapping.
Sci Rep. 2017 Nov 22;7(1):16002. doi: 10.1038/s41598-017-15929-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验