Suppr超能文献

SABRE和PHIP泵浦拉曼放大器与通向混沌之路

SABRE and PHIP pumped RASER and the route to chaos.

作者信息

Appelt Stephan, Lehmkuhl Sören, Fleischer Simon, Joalland Baptiste, Ariyasingha Nuwandi M, Chekmenev Eduard Y, Theis Thomas

机构信息

Central Institute for Engineering, Electronics and Analytics - Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, D-52056 Aachen, Germany.

Department of Chemistry, North Carolina State University Raleigh, NC 27695-8204, USA.

出版信息

J Magn Reson. 2021 Jan;322:106815. doi: 10.1016/j.jmr.2020.106815. Epub 2020 Aug 28.

Abstract

In a RASER (Radio-frequency Amplification by Stimulated Emission of Radiation), the fast relaxing electromagnetic modes of an LC resonator are enslaved by the slow nuclear spin motion, whose coherence decays with the transverse relaxation rate γ=1/T. Such a system obeys the slaving principle, mathematically identical with the adiabatic elimination procedure, leading to multi-mode RASER equations. If the pumping rate of nuclear spin polarization Γ>>γ, a second adiabatic elimination process applies and the spectral properties of the RASER can be predicted. The resulting model is similar to the model of two non-linear coupled oscillators and predicts the observed RASER phenomena, including frequency combs and mode collapse. If the second adiabatic elimination is not applicable, mode collapse is completely absent and successive period doubling processes and chaos occur at very high population inversions. We compare these theoretical predictions with experimental results from a PHIP (Para-Hydrogen Induced Polarization) pumped H RASER. Moreover, in SABRE (Signal Amplification By Reversible Exchange) pumped H experiments, RASER revivals are observed long after the parahydrogen pumping source has been switched off. All these findings shed light onto the links between NMR spectroscopy, RASER physics, synergetics and chaos theory. Several new applications are envisioned in the fields of quantum sensor technology, structure investigation or magnetic resonance imaging (MRI).

摘要

在受激辐射射频放大器(RASER)中,LC谐振器的快速弛豫电磁模式受慢核自旋运动支配,其相干性随横向弛豫率γ = 1/T衰减。这样的系统遵循役使原理,在数学上与绝热消除过程相同,从而导出多模RASER方程。如果核自旋极化的泵浦速率Γ >> γ,则应用第二个绝热消除过程,并且可以预测RASER的光谱特性。所得模型类似于两个非线性耦合振荡器的模型,并预测了观察到的RASER现象,包括频率梳和模式崩塌。如果第二个绝热消除不适用,则完全不存在模式崩塌,并且在非常高的粒子数反转情况下会出现连续的倍周期过程和混沌。我们将这些理论预测与来自PHIP(仲氢诱导极化)泵浦H RASER的实验结果进行比较。此外,在SABRE(通过可逆交换进行信号放大)泵浦H实验中,在仲氢泵浦源关闭很长时间后仍观察到RASER复苏。所有这些发现揭示了核磁共振光谱学、RASER物理学、协同学和混沌理论之间的联系。在量子传感器技术、结构研究或磁共振成像(MRI)领域设想了几种新应用。

相似文献

1
SABRE and PHIP pumped RASER and the route to chaos.
J Magn Reson. 2021 Jan;322:106815. doi: 10.1016/j.jmr.2020.106815. Epub 2020 Aug 28.
2
The Steady-State ALTADENA RASER Generates Continuous NMR Signals.
Chemphyschem. 2023 Jul 17;24(14):e202300204. doi: 10.1002/cphc.202300204. Epub 2023 Jun 12.
3
From LASER physics to the para-hydrogen pumped RASER.
Prog Nucl Magn Reson Spectrosc. 2019 Oct-Dec;114-115:1-32. doi: 10.1016/j.pnmrs.2019.05.003. Epub 2019 May 28.
4
Parahydrogen-Induced Radio Amplification by Stimulated Emission of Radiation.
Angew Chem Int Ed Engl. 2020 May 25;59(22):8654-8660. doi: 10.1002/anie.201916597. Epub 2020 Mar 24.
6
Through-bond and through-space radiofrequency amplification by stimulated emission of radiation.
Commun Chem. 2024 Oct 16;7(1):235. doi: 10.1038/s42004-024-01313-0.
7
A Versatile Compact Parahydrogen Membrane Reactor.
Chemphyschem. 2021 Dec 13;22(24):2526-2534. doi: 10.1002/cphc.202100667. Epub 2021 Oct 26.
9
Parahydrogen-Induced Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation.
Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202215678. doi: 10.1002/anie.202215678. Epub 2022 Dec 19.
10
Magnetic field dependence of the para-ortho conversion rate of molecular hydrogen in SABRE experiments.
J Magn Reson. 2024 Mar;360:107630. doi: 10.1016/j.jmr.2024.107630. Epub 2024 Feb 15.

引用本文的文献

1
Spontaneous increasing of sensitivity and resolution in parahydrogen-induced hyperpolarization by RASER.
Magn Reson Lett. 2024 May 24;5(1):200137. doi: 10.1016/j.mrl.2024.200137. eCollection 2025 Feb.
2
Through-bond and through-space radiofrequency amplification by stimulated emission of radiation.
Commun Chem. 2024 Oct 16;7(1):235. doi: 10.1038/s42004-024-01313-0.
3
Toward Ultra-High-Quality-Factor Wireless Masing Magnetic Resonance Sensing.
Angew Chem Int Ed Engl. 2024 Sep 9;63(37):e202406551. doi: 10.1002/anie.202406551. Epub 2024 Jul 12.
4
Metal-Mediated Catalytic Polarization Transfer from Hydrogen to 3,5-Dihalogenated Pyridines.
ACS Catal. 2024 Jan 5;14(2):994-1004. doi: 10.1021/acscatal.3c05378. eCollection 2024 Jan 19.
6
C Radiofrequency Amplification by Stimulated Emission of Radiation Threshold Sensing of Chemical Reactions.
J Am Chem Soc. 2023 May 24;145(20):11121-11129. doi: 10.1021/jacs.3c00776. Epub 2023 May 12.
7
Parahydrogen-Induced Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation.
Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202215678. doi: 10.1002/anie.202215678. Epub 2022 Dec 19.
9
RASER MRI: Magnetic resonance images formed spontaneously exploiting cooperative nonlinear interaction.
Sci Adv. 2022 Jul 15;8(28):eabp8483. doi: 10.1126/sciadv.abp8483. Epub 2022 Jul 13.
10
Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications.
Chem Sci. 2022 Mar 22;13(17):4670-4696. doi: 10.1039/d2sc00737a. eCollection 2022 May 4.

本文引用的文献

1
Parahydrogen-Induced Radio Amplification by Stimulated Emission of Radiation.
Angew Chem Int Ed Engl. 2020 May 25;59(22):8654-8660. doi: 10.1002/anie.201916597. Epub 2020 Mar 24.
3
From LASER physics to the para-hydrogen pumped RASER.
Prog Nucl Magn Reson Spectrosc. 2019 Oct-Dec;114-115:1-32. doi: 10.1016/j.pnmrs.2019.05.003. Epub 2019 May 28.
4
MR to go.
J Magn Reson. 2019 Sep;306:118-123. doi: 10.1016/j.jmr.2019.07.007. Epub 2019 Jul 9.
5
Paramagnetic NMR in solution and the solid state.
Prog Nucl Magn Reson Spectrosc. 2019 Apr;111:1-271. doi: 10.1016/j.pnmrs.2018.05.001. Epub 2018 May 24.
6
Generalizing, Extending, and Maximizing Nitrogen-15 Hyperpolarization Induced by Parahydrogen in Reversible Exchange.
J Phys Chem C Nanomater Interfaces. 2017 Mar 30;121(12):6626-6634. doi: 10.1021/acs.jpcc.6b12097. Epub 2017 Feb 2.
7
N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH.
J Phys Chem C Nanomater Interfaces. 2015 Apr 23;119(16):8786-8797. doi: 10.1021/acs.jpcc.5b01799. Epub 2015 Mar 30.
8
Microtesla SABRE enables 10% nitrogen-15 nuclear spin polarization.
J Am Chem Soc. 2015 Feb 4;137(4):1404-7. doi: 10.1021/ja512242d. Epub 2015 Jan 26.
9
Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume.
Science. 2013 Feb 1;339(6119):561-3. doi: 10.1126/science.1231675.
10
Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor.
Science. 2013 Feb 1;339(6119):557-60. doi: 10.1126/science.1231540.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验