Appelt Stephan, Lehmkuhl Sören, Fleischer Simon, Joalland Baptiste, Ariyasingha Nuwandi M, Chekmenev Eduard Y, Theis Thomas
Central Institute for Engineering, Electronics and Analytics - Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, D-52056 Aachen, Germany.
Department of Chemistry, North Carolina State University Raleigh, NC 27695-8204, USA.
J Magn Reson. 2021 Jan;322:106815. doi: 10.1016/j.jmr.2020.106815. Epub 2020 Aug 28.
In a RASER (Radio-frequency Amplification by Stimulated Emission of Radiation), the fast relaxing electromagnetic modes of an LC resonator are enslaved by the slow nuclear spin motion, whose coherence decays with the transverse relaxation rate γ=1/T. Such a system obeys the slaving principle, mathematically identical with the adiabatic elimination procedure, leading to multi-mode RASER equations. If the pumping rate of nuclear spin polarization Γ>>γ, a second adiabatic elimination process applies and the spectral properties of the RASER can be predicted. The resulting model is similar to the model of two non-linear coupled oscillators and predicts the observed RASER phenomena, including frequency combs and mode collapse. If the second adiabatic elimination is not applicable, mode collapse is completely absent and successive period doubling processes and chaos occur at very high population inversions. We compare these theoretical predictions with experimental results from a PHIP (Para-Hydrogen Induced Polarization) pumped H RASER. Moreover, in SABRE (Signal Amplification By Reversible Exchange) pumped H experiments, RASER revivals are observed long after the parahydrogen pumping source has been switched off. All these findings shed light onto the links between NMR spectroscopy, RASER physics, synergetics and chaos theory. Several new applications are envisioned in the fields of quantum sensor technology, structure investigation or magnetic resonance imaging (MRI).
在受激辐射射频放大器(RASER)中,LC谐振器的快速弛豫电磁模式受慢核自旋运动支配,其相干性随横向弛豫率γ = 1/T衰减。这样的系统遵循役使原理,在数学上与绝热消除过程相同,从而导出多模RASER方程。如果核自旋极化的泵浦速率Γ >> γ,则应用第二个绝热消除过程,并且可以预测RASER的光谱特性。所得模型类似于两个非线性耦合振荡器的模型,并预测了观察到的RASER现象,包括频率梳和模式崩塌。如果第二个绝热消除不适用,则完全不存在模式崩塌,并且在非常高的粒子数反转情况下会出现连续的倍周期过程和混沌。我们将这些理论预测与来自PHIP(仲氢诱导极化)泵浦H RASER的实验结果进行比较。此外,在SABRE(通过可逆交换进行信号放大)泵浦H实验中,在仲氢泵浦源关闭很长时间后仍观察到RASER复苏。所有这些发现揭示了核磁共振光谱学、RASER物理学、协同学和混沌理论之间的联系。在量子传感器技术、结构研究或磁共振成像(MRI)领域设想了几种新应用。