Razaghi-Moghadam Zahra, Nikoloski Zoran
Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
Curr Protoc Plant Biol. 2020 Jun;5(2):e20106. doi: 10.1002/cppb.20106.
Identifying the entirety of gene regulatory interactions in a biological system offers the possibility to determine the key molecular factors that affect important traits on the level of cells, tissues, and whole organisms. Despite the development of experimental approaches and technologies for identification of direct binding of transcription factors (TFs) to promoter regions of downstream target genes, computational approaches that utilize large compendia of transcriptomics data are still the predominant methods used to predict direct downstream targets of TFs, and thus reconstruct genome-wide gene-regulatory networks (GRNs). These approaches can broadly be categorized into unsupervised and supervised, based on whether data about known, experimentally verified gene-regulatory interactions are used in the process of reconstructing the underlying GRN. Here, we first describe the generic steps of supervised approaches for GRN reconstruction, since they have been recently shown to result in improved accuracy of the resulting networks? We also illustrate how they can be used with data from model organisms to obtain more accurate prediction of gene regulatory interactions. © 2020 The Authors. Basic Protocol 1: Construction of features used in supervised learning of gene regulatory interactions Basic Protocol 2: Learning the non-interacting TF-gene pairs Basic Protocol 3: Learning a classifier for gene regulatory interactions.
识别生物系统中基因调控相互作用的整体情况,为确定在细胞、组织和整个生物体水平上影响重要性状的关键分子因素提供了可能。尽管用于识别转录因子(TFs)与下游靶基因启动子区域直接结合的实验方法和技术有所发展,但利用大量转录组学数据的计算方法仍然是预测TFs直接下游靶标从而重建全基因组基因调控网络(GRNs)的主要方法。基于在重建潜在GRN的过程中是否使用了关于已知的、经实验验证的基因调控相互作用的数据,这些方法大致可分为无监督和有监督两类。在此,我们首先描述用于GRN重建的有监督方法的一般步骤,因为最近已证明它们能提高所得网络的准确性。我们还将说明如何将它们与来自模式生物的数据一起使用,以获得对基因调控相互作用更准确的预测。© 2020作者。基本方案1:用于基因调控相互作用监督学习的特征构建 基本方案2:学习非相互作用的TF-基因对 基本方案3:学习基因调控相互作用的分类器。