Suppr超能文献

基于转录组学数据图距离谱的基因调控网络的有监督学习。

Supervised learning of gene-regulatory networks based on graph distance profiles of transcriptomics data.

机构信息

Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.

Systems Biology and Mathematical Modeling group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.

出版信息

NPJ Syst Biol Appl. 2020 Jun 30;6(1):21. doi: 10.1038/s41540-020-0140-1.

Abstract

Characterisation of gene-regulatory network (GRN) interactions provides a stepping stone to understanding how genes affect cellular phenotypes. Yet, despite advances in profiling technologies, GRN reconstruction from gene expression data remains a pressing problem in systems biology. Here, we devise a supervised learning approach, GRADIS, which utilises support vector machine to reconstruct GRNs based on distance profiles obtained from a graph representation of transcriptomics data. By employing the data from Escherichia coli and Saccharomyces cerevisiae as well as synthetic networks from the DREAM4 and five network inference challenges, we demonstrate that our GRADIS approach outperforms the state-of-the-art supervised and unsupervided approaches. This holds when predictions about target genes for individual transcription factors as well as for the entire network are considered. We employ experimentally verified GRNs from E. coli and S. cerevisiae to validate the predictions and obtain further insights in the performance of the proposed approach. Our GRADIS approach offers the possibility for usage of other network-based representations of large-scale data, and can be readily extended to help the characterisation of other cellular networks, including protein-protein and protein-metabolite interactions.

摘要

基因调控网络(GRN)相互作用的特征提供了理解基因如何影响细胞表型的重要途径。然而,尽管在基因表达数据的分析技术方面取得了进展,但从基因表达数据中重建 GRN 仍然是系统生物学中的一个紧迫问题。在这里,我们设计了一种基于支持向量机的监督学习方法 GRADIS,该方法利用基于转录组学数据的图表示得到的距离分布来重建 GRN。通过使用大肠杆菌和酿酒酵母的数据以及 DREAM4 和五个网络推断挑战中的合成网络,我们证明了我们的 GRADIS 方法优于最先进的监督和无监督方法。无论是预测单个转录因子的靶基因还是整个网络,这都是成立的。我们利用大肠杆菌和酿酒酵母的实验验证的 GRN 来验证预测,并进一步深入了解所提出方法的性能。我们的 GRADIS 方法提供了使用其他基于网络的大规模数据表示的可能性,并且可以很容易地扩展以帮助表征其他细胞网络,包括蛋白质-蛋白质和蛋白质-代谢物相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d38c/7327016/fd93fe6cb0c3/41540_2020_140_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验