Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America.
Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America.
PLoS Pathog. 2020 Mar 24;16(3):e1008386. doi: 10.1371/journal.ppat.1008386. eCollection 2020 Mar.
Initial cell attachment of rotavirus (RV) to specific cell surface glycan receptors, which is the essential first step in RV infection, is mediated by the VP8* domain of the spike protein VP4. Recently, human histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors for human RV strains. RV strains in the P[4] and P[8] genotypes of the P[II] genogroup share common recognition of the Lewis b (Leb) and H type 1 antigens, however, the molecular basis of receptor recognition by the major human P[8] RVs remains unknown due to lack of experimental structural information. Here, we used nuclear magnetic resonance (NMR) spectroscopy-based titration experiments and NMR-derived high ambiguity driven docking (HADDOCK) methods to elucidate the molecular basis for P[8] VP8* recognition of the Leb (LNDFH I) and type 1 HBGAs. We also used X-ray crystallography to determine the molecular details underlying P[6] recognition of H type 1 HBGAs. Unlike P[6]/P[19] VP8s that recognize H type 1 HBGAs in a binding surface composed of an α-helix and a β-sheet, referred as the "βα binding site", the P[8] and P[4] VP8s bind Leb HBGAs in a previously undescribed pocket formed by the edges of two β-sheets, referred to as the "ββ binding site". Importantly, the P[8] and P[4] VP8s retain binding capability to non-Leb type 1 HBGAs using the βα binding site. The presence of two distinct binding sites for Leb and non-Leb HBGA glycans in the P[8] and P[4] VP8 domains suggests host-pathogen co-evolution under structural and functional adaptation of RV pathogens to host glycan polymorphisms. Assessment and understanding of the precise impact of this co-evolutionary process in determining RV host ranges and cross-species RV transmission should facilitate improved RV vaccine development and prediction of future RV strain emergence and epidemics.
轮状病毒(RV)最初与特定细胞表面聚糖受体的附着,这是 RV 感染的必要的第一步,是由 Spike 蛋白 VP4 的 VP8结构域介导的。最近,人类组织血型抗原(HBGA)被鉴定为人类 RV 株的受体或附着因子。P[II]基因群的 P[4]和 P[8]基因型的 RV 株共享对 Lewis b(Leb)和 H 型 1 抗原的共同识别,然而,由于缺乏实验结构信息,主要的人类 P[8] RV 受体识别的分子基础仍然未知。在这里,我们使用基于核磁共振(NMR)光谱的滴定实验和 NMR 衍生的高不确定性驱动对接(HADDOCK)方法来阐明 P[8]VP8识别 Leb(LNDFH I)和 H 型 1 HBGA 的分子基础。我们还使用 X 射线晶体学来确定 P[6]识别 H 型 1 HBGA 的分子细节。与识别 H 型 1 HBGA 的 P[6]/P[19]VP8不同,它们在由一个α-螺旋和一个β-折叠组成的结合表面(称为“βα结合位点”)上识别 H 型 1 HBGA,P[8]和 P[4]VP8在两个β-折叠边缘形成的以前未描述的口袋中结合 Leb HBGA,称为“ββ结合位点”。重要的是,P[8]和 P[4]VP8使用βα结合位点保留与非 Leb H 型 1 HBGA 的结合能力。P[8]和 P[4]VP8结构域中 Leb 和非 Leb HBGA 聚糖的两个不同结合位点的存在表明,轮状病毒病原体在结构和功能上适应宿主聚糖多态性的情况下,宿主-病原体共同进化。评估和理解这种共同进化过程对确定 RV 宿主范围和跨种 RV 传播的精确影响,应有助于改进 RV 疫苗的开发,并预测未来 RV 株的出现和流行。