Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, 001-0021 Sapporo, Japan.
Institute for Chemical Reaction Design and Discovery, Hokkaido University, 001-0021 Sapporo, Japan.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7606-7612. doi: 10.1073/pnas.2000189117. Epub 2020 Mar 24.
Load-bearing biological tissues, such as muscles, are highly fatigue-resistant, but how the exquisite hierarchical structures of biological tissues contribute to their excellent fatigue resistance is not well understood. In this work, we study antifatigue properties of soft materials with hierarchical structures using polyampholyte hydrogels (PA gels) as a simple model system. PA gels are tough and self-healing, consisting of reversible ionic bonds at the 1-nm scale, a cross-linked polymer network at the 10-nm scale, and bicontinuous hard/soft phase networks at the 100-nm scale. We find that the polymer network at the 10-nm scale determines the threshold of energy release rate above which the crack grows, while the bicontinuous phase networks at the 100-nm scale significantly decelerate the crack advance until a transition far above In situ small-angle X-ray scattering analysis reveals that the hard phase network suppresses the crack advance to show decelerated fatigue fracture, and corresponds to the rupture of the hard phase network.
承载生物组织,如肌肉,具有很高的耐疲劳性,但生物组织的精细层次结构如何有助于其优异的耐疲劳性还不是很清楚。在这项工作中,我们使用聚两性电解质水凝胶 (PA 凝胶) 作为一个简单的模型系统来研究具有层次结构的软材料的抗疲劳特性。PA 凝胶具有韧性和自修复性,由 1nm 尺度的可逆离子键、10nm 尺度的交联聚合物网络和 100nm 尺度的双连续硬/软相网络组成。我们发现,10nm 尺度的聚合物网络决定了能量释放率的阈值 ,超过该阈值,裂纹就会扩展,而 100nm 尺度的双连续相网络则显著减缓裂纹的扩展,直到 远高于 原位小角 X 射线散射分析表明,硬相网络抑制了裂纹的扩展,表现出减缓的疲劳断裂, 对应于硬相网络的破裂。