Suppr超能文献

自修复水凝胶中的介观双连续网络延缓疲劳断裂。

Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture.

机构信息

Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, 001-0021 Sapporo, Japan.

Institute for Chemical Reaction Design and Discovery, Hokkaido University, 001-0021 Sapporo, Japan.

出版信息

Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7606-7612. doi: 10.1073/pnas.2000189117. Epub 2020 Mar 24.

Abstract

Load-bearing biological tissues, such as muscles, are highly fatigue-resistant, but how the exquisite hierarchical structures of biological tissues contribute to their excellent fatigue resistance is not well understood. In this work, we study antifatigue properties of soft materials with hierarchical structures using polyampholyte hydrogels (PA gels) as a simple model system. PA gels are tough and self-healing, consisting of reversible ionic bonds at the 1-nm scale, a cross-linked polymer network at the 10-nm scale, and bicontinuous hard/soft phase networks at the 100-nm scale. We find that the polymer network at the 10-nm scale determines the threshold of energy release rate above which the crack grows, while the bicontinuous phase networks at the 100-nm scale significantly decelerate the crack advance until a transition far above In situ small-angle X-ray scattering analysis reveals that the hard phase network suppresses the crack advance to show decelerated fatigue fracture, and corresponds to the rupture of the hard phase network.

摘要

承载生物组织,如肌肉,具有很高的耐疲劳性,但生物组织的精细层次结构如何有助于其优异的耐疲劳性还不是很清楚。在这项工作中,我们使用聚两性电解质水凝胶 (PA 凝胶) 作为一个简单的模型系统来研究具有层次结构的软材料的抗疲劳特性。PA 凝胶具有韧性和自修复性,由 1nm 尺度的可逆离子键、10nm 尺度的交联聚合物网络和 100nm 尺度的双连续硬/软相网络组成。我们发现,10nm 尺度的聚合物网络决定了能量释放率的阈值 ,超过该阈值,裂纹就会扩展,而 100nm 尺度的双连续相网络则显著减缓裂纹的扩展,直到 远高于 原位小角 X 射线散射分析表明,硬相网络抑制了裂纹的扩展,表现出减缓的疲劳断裂, 对应于硬相网络的破裂。

相似文献

1
Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture.自修复水凝胶中的介观双连续网络延缓疲劳断裂。
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7606-7612. doi: 10.1073/pnas.2000189117. Epub 2020 Mar 24.
9
Tough and fatigue-resistant polymer networks by crack tip softening.通过裂纹尖端软化实现坚韧和耐疲劳的聚合物网络。
Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2217781120. doi: 10.1073/pnas.2217781120. Epub 2023 Jan 30.

引用本文的文献

7
Mechanochemistry: Fundamental Principles and Applications.机械化学:基本原理与应用
Adv Sci (Weinh). 2024 Aug 29:e2403949. doi: 10.1002/advs.202403949.
8
Unique stick-slip crack dynamics of double-network hydrogels under pure-shear loading.双网络水凝胶在纯剪切载荷下独特的粘滑裂纹动力学
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2322437121. doi: 10.1073/pnas.2322437121. Epub 2024 Jul 17.

本文引用的文献

1
Fatigue Fracture of Self-Recovery Hydrogels.自修复水凝胶的疲劳断裂
ACS Macro Lett. 2018 Mar 20;7(3):312-317. doi: 10.1021/acsmacrolett.8b00045. Epub 2018 Feb 16.
2
Fracture Toughness and Fatigue Threshold of Tough Hydrogels.坚韧水凝胶的断裂韧性与疲劳阈值
ACS Macro Lett. 2019 Jan 15;8(1):17-23. doi: 10.1021/acsmacrolett.8b00788. Epub 2018 Dec 17.
5
Muscle-like fatigue-resistant hydrogels by mechanical training.通过机械训练得到具有类似肌肉的抗疲劳水凝胶。
Proc Natl Acad Sci U S A. 2019 May 21;116(21):10244-10249. doi: 10.1073/pnas.1903019116. Epub 2019 May 8.
6
Stretchable materials of high toughness and low hysteresis.具有高韧性和低滞后性的可拉伸材料。
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):5967-5972. doi: 10.1073/pnas.1821420116. Epub 2019 Mar 8.
7
Anti-fatigue-fracture hydrogels.抗疲劳断裂水凝胶
Sci Adv. 2019 Jan 25;5(1):eaau8528. doi: 10.1126/sciadv.aau8528. eCollection 2019 Jan.
10
Fatigue fracture of nearly elastic hydrogels.近乎弹性水凝胶的疲劳断裂。
Soft Matter. 2018 May 9;14(18):3563-3571. doi: 10.1039/c8sm00460a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验