Suppr超能文献

基于生成对抗网络的多中心 CT 影像组学标准化方法。

Normalization of multicenter CT radiomics by a generative adversarial network method.

机构信息

South China University of Technology, Guangzhou 510006, People's Republic of China.

Yajun Li and Guoqiang Han should be considered joint first author.

出版信息

Phys Med Biol. 2021 Feb 25;66(5). doi: 10.1088/1361-6560/ab8319.

Abstract

To reduce the variability of radiomics features caused by computed tomography (CT) imaging protocols through using a generative adversarial network (GAN) method. In this study, we defined a set of images acquired with a certain imaging protocol as a domain, and a total of four domains (A, B, C, and T [target]) from three different scanners was included. In data set#1, 60 patients for each domain were collected. Data sets#2 and #3 included 40 slices of spleen for each of the domains. In data set#4, the slices of three colorectal cancer groups (= 28, 38 and 32) were separately retrieved from three different scanners, and each group contained short-term and long-term survivors. Seventy-seven features were extracted for evaluation by comparing the feature distributions. First, we trained the GAN model on data set#1 to learn how to normalize images from domains A, B and C to T. Next, by comparing feature distributions between normalized images of the different domains, we identified the appropriate model and assessed it, in data set#2 and data set#3, respectively. Finally, to investigate whether our proposed method could facilitate multicenter radiomics analysis, we built the least absolute shrinkage and selection operator classifier to distinguish short-term from long-term survivors based on a certain group in data set#4, and validate it in another two groups, which formed a cross-validation between groups in data set#4. After normalization, the percentage of aligned features between domains A versus T, B versus T, and C versus T increased from 10.4 %, 18.2% and 50.1% to 93.5%, 89.6% and 77.9%, respectively. In the cross-validation results, the average improvement of the area under the receiver operating characteristic curve achieved 11% (3%-32%). Our proposed GAN-based normalization method could reduce the variability of radiomics features caused by different CT imaging protocols and facilitate multicenter radiomics analysis.

摘要

通过使用生成对抗网络(GAN)方法,减少由于计算机断层扫描(CT)成像协议引起的放射组学特征的可变性。在这项研究中,我们将使用特定成像协议获取的一组图像定义为一个域,共包括来自三个不同扫描仪的四个域(A、B、C 和 T[目标])。在数据集#1 中,为每个域收集了 60 名患者。数据集#2 和#3 为每个域包含 40 个脾脏切片。在数据集#4 中,从三个不同的扫描仪中分别检索到三个结直肠癌组(=28、38 和 32)的切片,每个组包含短期和长期幸存者。通过比较特征分布,提取了 77 个特征进行评估。首先,我们在数据集#1 上训练 GAN 模型,以学习如何将来自域 A、B 和 C 的图像归一化为 T。接下来,通过比较不同域的归一化图像之间的特征分布,我们分别在数据集#2 和数据集#3 中确定了合适的模型并进行了评估。最后,为了研究我们提出的方法是否可以促进多中心放射组学分析,我们基于数据集#4 中的某一组构建了最小绝对收缩和选择算子分类器,以区分短期和长期幸存者,并在另外两组中进行了验证,这形成了数据集#4 中组间的交叉验证。归一化后,域 A 与 T、B 与 T 和 C 与 T 之间对齐特征的百分比从 10.4%、18.2%和 50.1%分别增加到 93.5%、89.6%和 77.9%。在交叉验证结果中,ROC 曲线下面积的平均提高了 11%(3%-32%)。我们提出的基于 GAN 的归一化方法可以减少由于不同 CT 成像协议引起的放射组学特征的可变性,并促进多中心放射组学分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验