Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, NC 27710, United States of America.
Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, United States of America.
Phys Med Biol. 2022 Apr 1;67(8). doi: 10.1088/1361-6560/ac5f6e.
4D-CBCT provides phase-resolved images valuable for radiomics analysis for outcome prediction throughout treatment courses. However, 4D-CBCT suffers from streak artifacts caused by under-sampling, which severely degrades the accuracy of radiomic features. Previously we developed group-patient-trained deep learning methods to enhance the 4D-CBCT quality for radiomics analysis, which was not optimized for individual patients. In this study, a patient-specific model was developed to further improve the accuracy of 4D-CBCT based radiomics analysis for individual patients.This patient-specific model was trained with intra-patient data. Specifically, patient planning 4D-CT was augmented through image translation, rotation, and deformation to generate 305 CT volumes from 10 volumes to simulate possible patient positions during the onboard image acquisition. 72 projections were simulated from 4D-CT for each phase and were used to reconstruct 4D-CBCT using FDK back-projection algorithm. The patient-specific model was trained using these 305 paired sets of patient-specific 4D-CT and 4D-CBCT data to enhance the 4D-CBCT image to match with 4D-CT images as ground truth. For model testing, 4D-CBCT were simulated from a separate set of 4D-CT scan images acquired from the same patient and were then enhanced by this patient-specific model. Radiomics features were then extracted from the testing 4D-CT, 4D-CBCT, and enhanced 4D-CBCT image sets for comparison. The patient-specific model was tested using 4 lung-SBRT patients' data and compared with the performance of the group-based model. The impact of model dimensionality, region of interest (ROI) selection, and loss function on the model accuracy was also investigated.Compared with a group-based model, the patient-specific training model further improved the accuracy of radiomic features, especially for features with large errors in the group-based model. For example, the 3D whole-body and ROI loss-based patient-specific model reduces the errors of the first-order median feature by 83.67%, the wavelet LLL feature maximum by 91.98%, and the wavelet HLL skewness feature by 15.0% on average for the four patients tested. In addition, the patient-specific models with different dimensionality (2D versus 3D) or loss functions (L1 versus L1 + VGG + GAN) achieved comparable results for improving the radiomics accuracy. Using whole-body or whole-body+ROI L1 loss for the model achieved better results than using the ROI L1 loss alone as the loss function.This study demonstrated that the patient-specific model is more effective than the group-based model on improving the accuracy of the 4D-CBCT radiomic features analysis, which could potentially improve the precision for outcome prediction in radiotherapy.
4D-CBCT 提供了相分辨率图像,这些图像对于治疗过程中的放射组学分析结果预测非常有价值。然而,4D-CBCT 存在由于欠采样引起的条纹伪影,这严重降低了放射组学特征的准确性。以前,我们开发了基于群组-患者的深度学习方法来增强 4D-CBCT 的质量,以便进行放射组学分析,但该方法并未针对个体患者进行优化。在这项研究中,我们开发了一种基于个体患者的模型,以进一步提高个体患者的基于 4D-CBCT 的放射组学分析的准确性。
该基于个体患者的模型是使用患者内部数据进行训练的。具体来说,通过图像平移、旋转和变形来扩充患者的计划 4D-CT,从 10 个容积生成 305 个 CT 容积,以模拟在机载图像采集期间患者可能的位置。从 4D-CT 模拟 72 个投影,并使用 FDK 反投影算法重建 4D-CBCT。使用这些 305 个配对的患者特定的 4D-CT 和 4D-CBCT 数据集来训练基于个体患者的模型,以增强 4D-CBCT 图像,使其与作为地面实况的 4D-CT 图像匹配。
对于模型测试,从同一患者的另一个 4D-CT 扫描图像集中模拟 4D-CBCT,并使用该基于个体患者的模型对其进行增强。然后,从测试的 4D-CT、4D-CBCT 和增强的 4D-CBCT 图像集中提取放射组学特征进行比较。使用 4 个肺 SBRT 患者的数据对基于个体患者的模型进行了测试,并与基于群组的模型的性能进行了比较。还研究了模型维数、感兴趣区域 (ROI) 选择和损失函数对模型准确性的影响。
与基于群组的模型相比,基于个体患者的训练模型进一步提高了放射组学特征的准确性,特别是对于基于群组的模型中存在较大误差的特征。例如,对于测试的四个患者,基于 3D 全身和 ROI 损失的基于个体患者的模型将一阶中位数特征的误差降低了 83.67%,小波 LLL 特征的最大值降低了 91.98%,小波 HLL 偏度特征降低了 15.0%。此外,不同维数(2D 与 3D)或损失函数(L1 与 L1+VGG+GAN)的基于个体患者的模型在提高放射组学准确性方面取得了相当的结果。与仅使用 ROI L1 损失作为损失函数相比,使用全身或全身+ROI L1 损失的模型获得了更好的结果。
本研究表明,基于个体患者的模型在提高 4D-CBCT 放射组学特征分析的准确性方面比基于群组的模型更有效,这可能有助于提高放射治疗中结果预测的精度。