Bock Peter, Nousiainen Paula, Elder Thomas, Blaukopf Markus, Amer Hassan, Zirbs Ronald, Potthast Antje, Gierlinger Notburga
Institute of Biophysics University of Natural Resources and Life Sciences Vienna Austria.
Department of Chemistry University of Helsinki Helsinki Finland.
J Raman Spectrosc. 2020 Mar;51(3):422-431. doi: 10.1002/jrs.5808. Epub 2020 Jan 3.
Vibrational spectroscopy is a very suitable tool for investigating the plant cell wall in situ with almost no sample preparation. The structural information of all different constituents is contained in a single spectrum. Interpretation therefore heavily relies on reference spectra and understanding of the vibrational behavior of the components under study. For the first time, we show infrared (IR) and Raman spectra of dibenzodioxocin (DBDO), an important lignin substructure. A detailed vibrational assignment of the molecule, based on quantum chemical computations, is given in the Supporting Information; the main results are found in the paper. Furthermore, we show IR and Raman spectra of synthetic guaiacyl lignin (dehydrogenation polymer-G-DHP). Raman spectra of DBDO and G-DHP both differ with respect to the excitation wavelength and therefore reveal different features of the substructure/polymer. This study confirms the idea previously put forward that Raman at 532 nm selectively probes end groups of lignin, whereas Raman at 785 nm and IR seem to represent the majority of lignin substructures.
振动光谱是一种非常适合原位研究植物细胞壁的工具,几乎无需样品制备。所有不同成分的结构信息都包含在单一光谱中。因此,解释在很大程度上依赖于参考光谱以及对所研究成分振动行为的理解。我们首次展示了二苯并二恶英(DBDO)这一重要木质素亚结构的红外(IR)和拉曼光谱。基于量子化学计算给出了该分子详细的振动归属,相关支持信息中给出了具体内容;主要结果在本文中呈现。此外,我们展示了合成愈创木基木质素(脱氢聚合物 - G - DHP)的红外和拉曼光谱。DBDO和G - DHP的拉曼光谱在激发波长方面存在差异,因此揭示了亚结构/聚合物的不同特征。本研究证实了先前提出的观点,即532 nm的拉曼光谱选择性地探测木质素的端基,而785 nm的拉曼光谱和红外光谱似乎代表了大部分木质素亚结构。