Wang Xuesong, Zhao Kanhao, Yao Lina, Fonzo Gregory A, Satterthwaite Theodore D, Rekik Islem, Zhang Yu
Data 61, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Australia.
Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
bioRxiv. 2024 Mar 4:2024.02.29.582790. doi: 10.1101/2024.02.29.582790.
Neurodevelopmental disorders, such as Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD), are characterized by comorbidity and heterogeneity. Identifying distinct subtypes within these disorders can illuminate the underlying neurobiological and clinical characteristics, paving the way for more tailored treatments. We adopted a novel transdiagnostic approach across ADHD and ASD, using cutting-edge contrastive graph machine learning to determine subtypes based on brain network connectivity as revealed by resting-state functional magnetic resonance imaging. Our approach identified two generalizable subtypes characterized by robust and distinct functional connectivity patterns, prominently within the frontoparietal control network and the somatomotor network. These subtypes exhibited pronounced differences in major cognitive and behavioural measures. We further demonstrated the generalizability of these subtypes using data collected from independent study sites. Our data-driven approach provides a novel solution for parsing biological heterogeneity in neurodevelopmental disorders.
神经发育障碍,如注意力缺陷多动障碍(ADHD)和自闭症谱系障碍(ASD),具有共病性和异质性的特点。识别这些障碍中的不同亚型可以阐明潜在的神经生物学和临床特征,为更具针对性的治疗铺平道路。我们采用了一种跨ADHD和ASD的新型跨诊断方法,使用前沿的对比图机器学习,根据静息态功能磁共振成像揭示的脑网络连接来确定亚型。我们的方法识别出了两种可推广的亚型,其特征是具有强大且独特的功能连接模式,主要存在于额顶叶控制网络和躯体运动网络中。这些亚型在主要认知和行为指标上表现出明显差异。我们使用从独立研究地点收集的数据进一步证明了这些亚型的可推广性。我们的数据驱动方法为解析神经发育障碍中的生物学异质性提供了一种新的解决方案。