Suppr超能文献

用于高光谱图像分类的朴素伽柏网络

Naive Gabor Networks for Hyperspectral Image Classification.

作者信息

Liu Chenying, Li Jun, He Lin, Plaza Antonio, Li Shutao, Li Bo

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):376-390. doi: 10.1109/TNNLS.2020.2978760. Epub 2021 Jan 4.

Abstract

Recently, many convolutional neural network (CNN) methods have been designed for hyperspectral image (HSI) classification since CNNs are able to produce good representations of data, which greatly benefits from a huge number of parameters. However, solving such a high-dimensional optimization problem often requires a large number of training samples in order to avoid overfitting. In addition, it is a typical nonconvex problem affected by many local minima and flat regions. To address these problems, in this article, we introduce the naive Gabor networks or Gabor-Nets that, for the first time in the literature, design and learn CNN kernels strictly in the form of Gabor filters, aiming to reduce the number of involved parameters and constrain the solution space and, hence, improve the performances of CNNs. Specifically, we develop an innovative phase-induced Gabor kernel, which is trickily designed to perform the Gabor feature learning via a linear combination of local low-frequency and high-frequency components of data controlled by the kernel phase. With the phase-induced Gabor kernel, the proposed Gabor-Nets gains the ability to automatically adapt to the local harmonic characteristics of the HSI data and, thus, yields more representative harmonic features. Also, this kernel can fulfill the traditional complex-valued Gabor filtering in a real-valued manner, hence making Gabor-Nets easily perform in a usual CNN thread. We evaluated our newly developed Gabor-Nets on three well-known HSIs, suggesting that our proposed Gabor-Nets can significantly improve the performance of CNNs, particularly with a small training set.

摘要

最近,由于卷积神经网络(CNN)能够很好地表示数据,许多针对高光谱图像(HSI)分类的卷积神经网络方法被设计出来,这在很大程度上得益于大量的参数。然而,解决这样一个高维优化问题通常需要大量的训练样本以避免过拟合。此外,这是一个典型的受许多局部极小值和平坦区域影响的非凸问题。为了解决这些问题,在本文中,我们引入了朴素的加博尔网络(Gabor-Nets),这在文献中尚属首次,它严格以加博尔滤波器的形式设计和学习CNN内核,旨在减少所涉及的参数数量并限制解空间,从而提高CNN的性能。具体来说,我们开发了一种创新的相位诱导加博尔内核,它经过巧妙设计,通过由内核相位控制的数据的局部低频和高频分量的线性组合来执行加博尔特征学习。借助相位诱导加博尔内核,所提出的Gabor-Nets获得了自动适应HSI数据局部谐波特征的能力,从而产生更具代表性的谐波特征。此外,该内核可以以实值方式实现传统的复值加博尔滤波,因此使Gabor-Nets能够在普通的CNN线程中轻松运行。我们在三个著名的高光谱图像上评估了我们新开发的Gabor-Nets,结果表明我们提出的Gabor-Nets可以显著提高CNN的性能,特别是在训练集较小时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验