Suppr超能文献

数字健康在物质使用障碍评估与治疗中的应用:国家药物滥用治疗临床试验网络的过去、当前及未来作用。

The application of digital health to the assessment and treatment of substance use disorders: The past, current, and future role of the National Drug Abuse Treatment Clinical Trials Network.

作者信息

Marsch Lisa A, Campbell Aimee, Campbell Cynthia, Chen Ching-Hua, Ertin Emre, Ghitza Udi, Lambert-Harris Chantal, Hassanpour Saeed, Holtyn August F, Hser Yih-Ing, Jacobs Petra, Klausner Jeffrey D, Lemley Shea, Kotz David, Meier Andrea, McLeman Bethany, McNeely Jennifer, Mishra Varun, Mooney Larissa, Nunes Edward, Stafylis Chrysovalantis, Stanger Catherine, Saunders Elizabeth, Subramaniam Geetha, Young Sean

机构信息

Center for Technology and Behavioral Health, Geisel School of Medicine at Dartmouth College, 46 Centerra Dr, Lebanon, NH 03766, USA; Center for Technology and Behavioral Health, Geisel School of Medicine at Dartmouth College, 46 Centerra Dr, Lebanon, NH 03766, USA.

Center for Technology and Behavioral Health, Geisel School of Medicine at Dartmouth College, 46 Centerra Dr, Lebanon, NH 03766, USA; Department of Psychiatry, Columbia University, 1051 Riverside Dr, New York, NY 10032, USA.

出版信息

J Subst Abuse Treat. 2020 Mar;112S:4-11. doi: 10.1016/j.jsat.2020.02.005.

Abstract

The application of digital technologies to better assess, understand, and treat substance use disorders (SUDs) is a particularly promising and vibrant area of scientific research. The National Drug Abuse Treatment Clinical Trials Network (CTN), launched in 1999 by the U.S. National Institute on Drug Abuse, has supported a growing line of research that leverages digital technologies to glean new insights into SUDs and provide science-based therapeutic tools to a diverse array of persons with SUDs. This manuscript provides an overview of the breadth and impact of research conducted in the realm of digital health within the CTN. This work has included the CTN's efforts to systematically embed digital screeners for SUDs into general medical settings to impact care models across the nation. This work has also included a pivotal multi-site clinical trial conducted on the CTN platform, whose data led to the very first "prescription digital therapeutic" authorized by the U.S. Food and Drug Administration (FDA) for the treatment of SUDs. Further CTN research includes the study of telehealth to increase capacity for science-based SUD treatment in rural and under-resourced communities. In addition, the CTN has supported an assessment of the feasibility of detecting cocaine-taking behavior via smartwatch sensing. And, the CTN has supported the conduct of clinical trials entirely online (including the recruitment of national and hard-to-reach/under-served participant samples online, with remote intervention delivery and data collection). Further, the CTN is supporting innovative work focused on the use of digital health technologies and data analytics to identify digital biomarkers and understand the clinical trajectories of individuals receiving medications for opioid use disorder (OUD). This manuscript concludes by outlining the many potential future opportunities to leverage the unique national CTN research network to scale-up the science on digital health to examine optimal strategies to increase the reach of science-based SUD service delivery models both within and outside of healthcare.

摘要

将数字技术应用于更好地评估、理解和治疗物质使用障碍(SUDs)是一个特别有前景且充满活力的科研领域。美国国立药物滥用研究所于1999年发起的国家药物滥用治疗临床试验网络(CTN),支持了一系列不断发展的研究,这些研究利用数字技术来获取关于SUDs的新见解,并为各种各样的SUD患者提供基于科学的治疗工具。本手稿概述了CTN内数字健康领域所开展研究的广度和影响。这项工作包括CTN将SUDs数字筛查工具系统地嵌入普通医疗环境以影响全国护理模式的努力。这项工作还包括在CTN平台上进行的一项关键的多中心临床试验,其数据促成了美国食品药品监督管理局(FDA)批准的首个用于治疗SUDs的“处方数字疗法”。CTN的进一步研究包括对远程医疗的研究,以提高农村和资源匮乏社区基于科学的SUD治疗能力。此外,CTN支持了通过智能手表传感检测可卡因使用行为可行性的评估。而且,CTN支持完全在线进行临床试验(包括在线招募全国性的、难以接触到/服务不足的参与者样本,进行远程干预和数据收集)。此外,CTN正在支持创新性工作,重点是利用数字健康技术和数据分析来识别数字生物标志物,并了解接受阿片类药物使用障碍(OUD)药物治疗的个体的临床轨迹。本手稿最后概述了许多未来潜在的机会,即利用独特的全国性CTN研究网络来扩大数字健康科学的规模,以研究最佳策略,从而在医疗保健内外扩大基于科学的SUD服务提供模式的覆盖范围。

相似文献

引用本文的文献

本文引用的文献

2
Social Data: Biases, Methodological Pitfalls, and Ethical Boundaries.社会数据:偏见、方法陷阱与伦理边界
Front Big Data. 2019 Jul 11;2:13. doi: 10.3389/fdata.2019.00013. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验