East China University of Science and Technology, Shanghai, China.
Brief Bioinform. 2021 Mar 22;22(2):2058-2072. doi: 10.1093/bib/bbaa027.
Drug discovery and development is a time-consuming and costly process. Therefore, drug repositioning has become an effective approach to address the issues by identifying new therapeutic or pharmacological actions for existing drugs. The drug's anatomical therapeutic chemical (ATC) code is a hierarchical classification system categorized as five levels according to the organs or systems that drugs act and the pharmacology, therapeutic and chemical properties of drugs. The 2nd-, 3rd- and 4th-level ATC codes reserved the therapeutic and pharmacological information of drugs. With the hypothesis that drugs with similar structures or targets would possess similar ATC codes, we exploited a network-based approach to predict the 2nd-, 3rd- and 4th-level ATC codes by constructing substructure drug-ATC (SD-ATC), target drug-ATC (TD-ATC) and Substructure&Target drug-ATC (STD-ATC) networks. After 10-fold cross validation and two external validations, the STD-ATC models outperformed the SD-ATC and TD-ATC ones. Furthermore, with KR as fingerprint, the STD-ATC model was identified as the optimal model with AUC values at 0.899 ± 0.015, 0.916 and 0.893 for 10-fold cross validation, external validation set 1 and external validation set 2, respectively. To illustrate the predictive capability of the STD-ATC model with KR fingerprint, as a case study, we predicted 25 FDA-approved drugs (22 drugs were actually purchased) to have potential activities on heart failure using that model. Experiments in vitro confirmed that 8 of the 22 old drugs have shown mild to potent cardioprotective activities on both hypoxia model and oxygen-glucose deprivation model, which demonstrated that our STD-ATC prediction model would be an effective tool for drug repositioning.
药物发现和开发是一个耗时且昂贵的过程。因此,药物重定位已成为一种有效的方法,可以通过确定现有药物的新治疗或药理学作用来解决这些问题。药物的解剖治疗化学(ATC)代码是一个分层分类系统,根据药物作用的器官或系统以及药物的药理学、治疗学和化学性质分为五个级别。第 2、3 和 4 级 ATC 代码保留了药物的治疗和药理学信息。基于药物结构或靶点相似的药物可能具有相似的 ATC 代码这一假设,我们利用基于网络的方法通过构建药物结构-ATC(SD-ATC)、药物靶点-ATC(TD-ATC)和药物结构与靶点-ATC(STD-ATC)网络来预测第 2、3 和 4 级 ATC 代码。经过 10 倍交叉验证和两次外部验证,STD-ATC 模型优于 SD-ATC 和 TD-ATC 模型。此外,使用 KR 作为指纹,STD-ATC 模型被确定为最佳模型,其 AUC 值在 10 倍交叉验证、外部验证集 1 和外部验证集 2 中分别为 0.899±0.015、0.916 和 0.893。为了说明使用 KR 指纹的 STD-ATC 模型的预测能力,作为一个案例研究,我们使用该模型预测了 25 种已获美国食品和药物管理局批准的药物(其中 22 种药物实际上已被购买)对心力衰竭可能具有的潜在活性。体外实验证实,22 种旧药物中有 8 种对缺氧模型和氧葡萄糖剥夺模型均表现出轻度至强效的心脏保护活性,这表明我们的 STD-ATC 预测模型将成为药物重定位的有效工具。