Department of Mechanical Engineering, University of Melbourne, Parkville, Melbourne, 3010, Australia.
Data61, Victoria Research Lab, West Melbourne, 3003, Australia.
BMC Bioinformatics. 2018 Apr 11;19(1):129. doi: 10.1186/s12859-018-2123-4.
Drug repositioning is the process of identifying new uses for existing drugs. Computational drug repositioning methods can reduce the time, costs and risks of drug development by automating the analysis of the relationships in pharmacology networks. Pharmacology networks are large and heterogeneous. Clustering drugs into small groups can simplify large pharmacology networks, these subgroups can also be used as a starting point for repositioning drugs. In this paper, we propose a two-tiered drug-centric unsupervised clustering approach for drug repositioning, integrating heterogeneous drug data profiles: drug-chemical, drug-disease, drug-gene, drug-protein and drug-side effect relationships.
The proposed drug repositioning approach is threefold; (i) clustering drugs based on their homogeneous profiles using the Growing Self Organizing Map (GSOM); (ii) clustering drugs based on drug-drug relation matrices based on the previous step, considering three state-of-the-art graph clustering methods; and (iii) inferring drug repositioning candidates and assigning a confidence value for each identified candidate. In this paper, we compare our two-tiered clustering approach against two existing heterogeneous data integration approaches with reference to the Anatomical Therapeutic Chemical (ATC) classification, using GSOM. Our approach yields Normalized Mutual Information (NMI) and Standardized Mutual Information (SMI) of 0.66 and 36.11, respectively, while the two existing methods yield NMI of 0.60 and 0.64 and SMI of 22.26 and 33.59. Moreover, the two existing approaches failed to produce useful cluster separations when using graph clustering algorithms while our approach is able to identify useful clusters for drug repositioning. Furthermore, we provide clinical evidence for four predicted results (Chlorthalidone, Indomethacin, Metformin and Thioridazine) to support that our proposed approach can be reliably used to infer ATC code and drug repositioning.
The proposed two-tiered unsupervised clustering approach is suitable for drug clustering and enables heterogeneous data integration. It also enables identifying reliable repositioning drug candidates with reference to ATC therapeutic classification. The repositioning drug candidates identified consistently by multiple clustering algorithms and with high confidence have a higher possibility of being effective repositioning candidates.
药物重定位是指为现有药物确定新用途的过程。通过自动化分析药理学网络中的关系,计算药物重定位方法可以减少药物开发的时间、成本和风险。药理学网络庞大且异构。将药物聚类成小的群组可以简化大型药理学网络,这些子组也可以用作药物重定位的起点。在本文中,我们提出了一种基于药物的两阶段无监督聚类方法,用于药物重定位,整合了异构药物数据谱:药物-化学、药物-疾病、药物-基因、药物-蛋白质和药物-副作用关系。
提出的药物重定位方法有三个步骤:(i)使用增长型自组织映射(GSOM)根据药物的同质图谱对药物进行聚类;(ii)根据前一步基于药物-药物关系矩阵,考虑三种最先进的图聚类方法对药物进行聚类;(iii)推断药物重定位候选物并为每个识别的候选物分配置信值。在本文中,我们将我们的两阶段聚类方法与两种现有的异构数据集成方法进行比较,参考解剖治疗化学(ATC)分类,使用 GSOM。我们的方法产生的归一化互信息(NMI)和标准化互信息(SMI)分别为 0.66 和 36.11,而两种现有方法的 NMI 分别为 0.60 和 0.64,SMI 分别为 22.26 和 33.59。此外,当使用图聚类算法时,两种现有方法都无法产生有用的聚类分离,而我们的方法能够识别出用于药物重定位的有用聚类。此外,我们还为四个预测结果(氯噻酮、吲哚美辛、二甲双胍和硫利达嗪)提供了临床证据,以支持我们提出的方法可以可靠地用于推断 ATC 治疗分类和药物重定位。
提出的两阶段无监督聚类方法适用于药物聚类,并支持异构数据集成。它还能够根据 ATC 治疗分类识别可靠的药物重定位候选物。通过多种聚类算法一致识别且置信度高的药物重定位候选物更有可能成为有效的重定位候选物。