Suppr超能文献

用于与原子精确的石墨烯纳米带进行电接触的具有10纳米纳米间隙的更多电极。

MoRe Electrodes with 10 nm Nanogaps for Electrical Contact to Atomically Precise Graphene Nanoribbons.

作者信息

Bouwmeester Damian, Ghiasi Talieh S, Borin Barin Gabriela, Müllen Klaus, Ruffieux Pascal, Fasel Roman, van der Zant Herre S J

机构信息

Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.

nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.

出版信息

ACS Appl Nano Mater. 2023 Jul 21;6(15):13935-13944. doi: 10.1021/acsanm.3c01630. eCollection 2023 Aug 11.

Abstract

Atomically precise graphene nanoribbons (GNRs) are predicted to exhibit exceptional edge-related properties, such as localized edge states, spin polarization, and half-metallicity. However, the absence of low-resistance nanoscale electrical contacts to the GNRs hinders harnessing their properties in field-effect transistors. In this paper, we make electrical contact with nine-atom-wide armchair GNRs using superconducting alloy MoRe as well as Pd (as a reference), which are two of the metals providing low-resistance contacts to carbon nanotubes. We take a step toward contacting a single GNR by fabricating electrodes with needlelike geometry, with about 20 nm tip diameter and 10 nm separation. To preserve the nanoscale geometry of the contacts, we develop a PMMA-assisted technique to transfer the GNRs onto the prepatterned electrodes. Our device characterizations as a function of bias voltage and temperature show thermally activated gate-tunable conductance in GNR-MoRe-based transistors.

摘要

原子精确的石墨烯纳米带(GNRs)预计会展现出优异的边缘相关特性,如局域边缘态、自旋极化和半金属性。然而,缺乏与GNRs的低电阻纳米级电接触阻碍了在场效应晶体管中利用它们的特性。在本文中,我们使用超导合金MoRe以及Pd(作为参考)与九原子宽的扶手椅型GNRs进行电接触,这两种金属是能与碳纳米管形成低电阻接触的金属。我们通过制造针尖状几何形状的电极(尖端直径约20纳米,间距10纳米)向接触单个GNR迈进了一步。为了保留接触的纳米级几何形状,我们开发了一种聚甲基丙烯酸甲酯辅助技术,将GNRs转移到预先图案化的电极上。我们作为偏置电压和温度函数的器件表征显示,基于GNR-MoRe的晶体管中存在热激活的栅极可调电导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d004/10425920/b8428df911b5/an3c01630_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验