Yong Wen-An
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People's Republic of China.
Philos Trans A Math Phys Eng Sci. 2020 May;378(2170):20190177. doi: 10.1098/rsta.2019.0177. Epub 2020 Mar 30.
This paper proposes four fundamental requirements for establishing PDEs (partial differential equations) modelling irreversible processes. We show that the PDEs derived via the CDF (conservation-dissipation formalism) meet all the requirements. In doing so, we find useful constraints on the freedoms of CDF and point out that a shortcoming of the formalism can be remedied with the help of the Maxwell iteration. It is proved that the iteration preserves the gradient structure and strong dissipativeness of the CDF-based PDEs. A refined formulation of the second law of thermodynamics is given to characterize the strong dissipativeness, while the gradient structure corresponds to nonlinear Onsager relations. Further advantages and limitations of CDF will also be presented. This article is part of the theme issue 'Fundamental aspects of nonequilibrium thermodynamics'.
本文提出了建立偏微分方程(PDEs)以模拟不可逆过程的四个基本要求。我们表明,通过守恒 - 耗散形式(CDF)推导得到的偏微分方程满足所有这些要求。在此过程中,我们发现了对CDF自由度的有用约束,并指出该形式主义的一个缺点可以借助麦克斯韦迭代来弥补。证明了该迭代保留了基于CDF的偏微分方程的梯度结构和强耗散性。给出了热力学第二定律的精细表述以表征强耗散性,而梯度结构对应于非线性昂萨格关系。还将介绍CDF的进一步优点和局限性。本文是“非平衡热力学的基本方面”主题特刊的一部分。