Suppr超能文献

基于全图像条的形状、纹理和颜色特征的自动口腔鳞状细胞癌识别。

Automated oral squamous cell carcinoma identification using shape, texture and color features of whole image strips.

机构信息

Department of Computer Science & IT, Cotton University, Panbazar, Guwahati 781001, Assam, India.

Central Computational and Numerical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam, India.

出版信息

Tissue Cell. 2020 Apr;63:101322. doi: 10.1016/j.tice.2019.101322. Epub 2019 Dec 4.

Abstract

Despite profound knowledge of the incidence of oral cancers and a large body of research beyond it, it continues to beat diagnosis and treatment management. Post physical observation by clinicians, a biopsy is a gold standard for accurate detection of any abnormalities. Towards the application of artificial intelligence as an aid to diagnosis, automated cell nuclei segmentation is the most essential step for the recognition of the cancer cells. In this study, we have extracted the shape, texture and color features from the histopathological images collected indigenously from regional hospitals. A dataset of 42 whole slide slices was used to automatically segment and generate a cell level dataset of 720 nuclei. Next, different classifiers were applied for classification purposes. 99.4 % accuracy using Decision Tree Classifier, 100 % accuracy using both SVM and Logistic regression and 100 % accuracy using SVM, Logistic regression and Linear Discriminant were acquired for shape, textural and color features respectively. The in-depth analysis showed SVM and Linear Discriminant classifier gave the best result for texture and color features respectively. The achieved result can be effectively converted to software as an assistant diagnostic tool.

摘要

尽管对口腔癌的发病率有了深刻的认识,并且有大量的研究成果,但它仍然难以诊断和治疗。临床医生进行物理观察后,活检是准确检测任何异常的金标准。为了将人工智能应用于诊断辅助,自动细胞核分割是识别癌细胞的最基本步骤。在这项研究中,我们从地区医院采集的组织病理学图像中提取了形状、纹理和颜色特征。使用 42 张全幻灯片切片数据集自动分割并生成 720 个细胞核的细胞级数据集。然后,应用不同的分类器进行分类。决策树分类器的准确率为 99.4%,SVM 和逻辑回归的准确率均为 100%,SVM、逻辑回归和线性判别分别获得了形状、纹理和颜色特征的 100%准确率。深入分析表明,SVM 和线性判别分类器分别为纹理和颜色特征提供了最佳结果。所获得的结果可以有效地转换为软件,作为辅助诊断工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验