Suppr超能文献

口腔鳞状细胞癌的纹理模式分类。

Textural pattern classification for oral squamous cell carcinoma.

机构信息

Centre for Computational and Numerical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India.

School of Medical Science and Technology, IIT Kharagpur, West Bengal, India.

出版信息

J Microsc. 2018 Jan;269(1):85-93. doi: 10.1111/jmi.12611. Epub 2017 Aug 2.

Abstract

Despite being an area of cancer with highest worldwide incidence, oral cancer yet remains to be widely researched. Studies on computer-aided analysis of pathological slides of oral cancer contribute a lot to the diagnosis and treatment of the disease. Some researches in this direction have been carried out on oral submucous fibrosis. In this work an approach for analysing abnormality based on textural features present in squamous cell carcinoma histological slides have been considered. Histogram and grey-level co-occurrence matrix approaches for extraction of textural features from biopsy images with normal and malignant cells are used here. Further, we have used linear support vector machine classifier for automated diagnosis of the oral cancer, which gives 100% accuracy.

摘要

尽管口腔癌是全球发病率最高的癌症领域之一,但它仍然是一个广泛研究的领域。计算机辅助分析口腔癌病理幻灯片的研究对该疾病的诊断和治疗有很大的贡献。在这个方向上已经有一些针对口腔黏膜下纤维性变的研究。在这项工作中,我们考虑了一种基于鳞状细胞癌组织学幻灯片中存在的纹理特征的异常分析方法。这里使用了直方图和灰度共生矩阵方法从包含正常和恶性细胞的活检图像中提取纹理特征。此外,我们还使用了线性支持向量机分类器来自动诊断口腔癌,其准确率达到了 100%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验