Suppr超能文献

基于口腔照片的口腔鳞状细胞癌检测的人工智能:全面文献综述。

Artificial intelligence for oral squamous cell carcinoma detection based on oral photographs: A comprehensive literature review.

机构信息

Equipe Microenvironnement Immunitaire et Immunothérapie, CIMI Paris, INSERM U1135, Sorbonne université, PARIS, France.

UFR Mathématiques et Informatique, département informatique, laboratoire LIPADE, Université Paris Cité, Paris, France.

出版信息

Cancer Med. 2024 Jan;13(1):e6822. doi: 10.1002/cam4.6822. Epub 2024 Jan 2.

Abstract

INTRODUCTION

Oral squamous cell carcinoma (OSCC) presents a significant global health challenge. The integration of artificial intelligence (AI) and computer vision holds promise for the early detection of OSCC through the analysis of digitized oral photographs. This literature review explores the landscape of AI-driven OSCC automatic detection, assessing both the performance and limitations of the current state of the art.

MATERIALS AND METHODS

An electronic search using several data base was conducted, and a systematic review performed in accordance with PRISMA guidelines (CRD42023441416).

RESULTS

Several studies have demonstrated remarkable results for this task, consistently achieving sensitivity rates exceeding 85% and accuracy rates surpassing 90%, often encompassing around 1000 images. The review scrutinizes these studies, shedding light on their methodologies, including the use of recent machine learning and pattern recognition approaches coupled with different supervision strategies. However, comparing the results from different papers is challenging due to variations in the datasets used.

DISCUSSION

Considering these findings, this review underscores the urgent need for more robust and reliable datasets in the field of OSCC detection. Furthermore, it highlights the potential of advanced techniques such as multi-task learning, attention mechanisms, and ensemble learning as crucial tools in enhancing the accuracy and sensitivity of OSCC detection through oral photographs.

CONCLUSION

These insights collectively emphasize the transformative impact of AI-driven approaches on early OSCC diagnosis, with the potential to significantly improve patient outcomes and healthcare practices.

摘要

简介

口腔鳞状细胞癌(OSCC)是一个全球性的重大健康挑战。人工智能(AI)和计算机视觉的融合有望通过分析数字化口腔照片来实现 OSCC 的早期检测。本文献综述探讨了 AI 驱动的 OSCC 自动检测的现状,评估了当前最先进技术的性能和局限性。

材料与方法

使用多个数据库进行了电子搜索,并按照 PRISMA 指南(CRD42023441416)进行了系统综述。

结果

几项研究已经证明了这项任务的显著成果,一致实现了超过 85%的敏感性率和超过 90%的准确性率,通常涵盖约 1000 张图像。综述仔细审查了这些研究,揭示了它们的方法,包括使用最近的机器学习和模式识别方法以及不同的监督策略。然而,由于使用的数据集不同,比较来自不同论文的结果具有挑战性。

讨论

考虑到这些发现,本综述强调了在 OSCC 检测领域需要更强大和可靠的数据集。此外,它强调了先进技术的潜力,如多任务学习、注意力机制和集成学习,作为通过口腔照片提高 OSCC 检测准确性和敏感性的关键工具。

结论

这些观点共同强调了 AI 驱动方法对早期 OSCC 诊断的变革性影响,有可能显著改善患者的预后和医疗实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c636/10807632/1dd201dbae7b/CAM4-13-e6822-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验