The Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University, Jerusalem 9190416, Israel.
Department for Bio-medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
Biomolecules. 2020 Mar 26;10(4):503. doi: 10.3390/biom10040503.
Despite huge investments and major efforts to develop remedies for Alzheimer's disease (AD) in the past decades, AD remains incurable. While evidence for molecular and phenotypic variability in AD have been accumulating, AD research still heavily relies on the search for AD-specific genetic/protein biomarkers that are expected to exhibit repetitive patterns throughout all patients. Thus, the classification of AD patients to different categories is expected to set the basis for the development of therapies that will be beneficial for subpopulations of patients. Here we explore the molecular heterogeneity among a large cohort of AD and non-demented brain samples, aiming to address the question whether AD-specific molecular biomarkers can progress our understanding of the disease and advance the development of anti-AD therapeutics. We studied 951 brain samples, obtained from up to 17 brain regions of 85 AD patients and 22 non-demented subjects. Utilizing an information-theoretic approach, we deciphered the brain sample-specific structures of altered transcriptional networks. Our in-depth analysis revealed that 7 subnetworks were repetitive in the 737 diseased and 214 non-demented brain samples. Each sample was characterized by a subset consisting of ~1-3 subnetworks out of 7, generating 52 distinct altered transcriptional signatures that characterized the 951 samples. We show that 30 different altered transcriptional signatures characterized solely AD samples and were not found in any of the non-demented samples. In contrast, the rest of the signatures characterized different subsets of sample types, demonstrating the high molecular variability and complexity of gene expression in AD. Importantly, different AD patients exhibiting similar expression levels of AD biomarkers harbored distinct altered transcriptional networks. Our results emphasize the need to expand the biomarker-based stratification to patient-specific transcriptional signature identification for improved AD diagnosis and for the development of subclass-specific future treatment.
尽管过去几十年来在开发阿尔茨海默病 (AD) 治疗方法方面投入了大量资金并做出了重大努力,但 AD 仍然无法治愈。虽然 AD 中分子和表型变异性的证据不断积累,但 AD 研究仍然严重依赖于寻找 AD 特异性遗传/蛋白质生物标志物的研究,这些生物标志物预计在所有患者中都表现出重复模式。因此,将 AD 患者分类为不同类别有望为开发对患者亚群有益的治疗方法奠定基础。在这里,我们探索了一大组 AD 和非痴呆脑样本中的分子异质性,旨在探讨 AD 特异性分子生物标志物是否可以增进我们对疾病的理解并推进抗 AD 治疗药物的开发。我们研究了 951 个脑样本,这些样本来自 85 名 AD 患者和 22 名非痴呆患者的多达 17 个脑区。利用信息论方法,我们破译了特定于脑样本的改变转录网络结构。我们的深入分析表明,在 737 个患病和 214 个非痴呆的脑样本中,有 7 个亚网络具有重复性。每个样本的特征是由 7 个亚网络中的 1-3 个亚网络组成的子集,从而产生了 52 个不同的改变转录特征,这些特征描述了 951 个样本。我们发现,30 个不同的改变转录特征仅描述了 AD 样本,而在任何非痴呆样本中都未发现。相比之下,其余特征则描述了不同的样本类型子集,这表明 AD 中基因表达具有高度的分子变异性和复杂性。重要的是,不同的 AD 患者表现出相似的 AD 生物标志物表达水平,但却具有不同的改变转录网络。我们的研究结果强调,需要将基于生物标志物的分层扩展到患者特定的转录特征识别,以提高 AD 的诊断,并为开发亚类特异性的未来治疗方法提供帮助。