Rajaeipour Pouya, Dorn Alex, Banerjee Kaustubh, Zappe Hans, Ataman Çağlar
Opt Express. 2020 Mar 30;28(7):9944-9956. doi: 10.1364/OE.387734.
Adaptive optics (AO) represents a powerful range of image correction technologies with proven benefits for many life-science microscopy methods. However, the complexity of adding a reflective wavefront modulator and in some cases a wavefront sensor into an already complicated microscope has made AO prohibitive for its widespread adaptation in microscopy systems. We present here the design and performance of a compact fluorescence microscope using a fully refractive optofluidic wavefront modulator, yielding imaging performance on par with that of conventional deformable mirrors, both in correction fidelity and articulation. We combine this device with a modal sensorless wavefront estimation algorithm that uses spatial frequency content of acquired images as a quality metric and thereby demonstrate a completely in-line adaptive optics microscope that can perform aberration correction up to 4 radial order of Zernike modes. This entirely new concept for adaptive optics microscopy may prove to extend the performance limits and widespread applicability of AO in life-science imaging.
自适应光学(AO)代表了一系列强大的图像校正技术,已被证明对许多生命科学显微镜方法有益。然而,在已经很复杂的显微镜中添加反射式波前调制器,在某些情况下还添加波前传感器,其复杂性使得自适应光学在显微镜系统中难以广泛应用。我们在此展示了一种紧凑型荧光显微镜的设计和性能,该显微镜使用了全折射光流控波前调制器,在校正保真度和清晰度方面,成像性能与传统变形镜相当。我们将此设备与一种无模态传感器的波前估计算法相结合,该算法将采集图像的空间频率内容用作质量指标,从而展示了一种完全在线的自适应光学显微镜,它可以对高达4阶径向泽尼克模式的像差进行校正。这种全新的自适应光学显微镜概念可能会扩展自适应光学在生命科学成像中的性能极限和广泛适用性。