Iyer Rishyashring R, Liu Yuan-Zhi, Boppart Stephen A
Opt Express. 2019 Apr 29;27(9):12998-13014. doi: 10.1364/OE.27.012998.
Traditional wavefront-sensor-based adaptive optics (AO) techniques face numerous challenges that cause poor performance in scattering samples. Sensorless closed-loop AO techniques overcome these challenges by optimizing an image metric at different states of a deformable mirror (DM). This requires acquisition of a series of images continuously for optimization - an arduous task in dynamic in vivo samples. We present a technique where the different states of the DM are instead simulated using computational adaptive optics (CAO). The optimal wavefront is estimated by performing CAO on an initial volume to minimize an image metric, and then the pattern is translated to the DM. In this paper, we have demonstrated this technique on a spectral-domain optical coherence microscope for three applications: real-time depth-wise aberration correction, single-shot volumetric aberration correction, and extension of depth-of-focus. Our technique overcomes the disadvantages of sensor-based AO, reduces the number of image acquisitions compared to traditional sensorless AO, and retains the advantages of both computational and hardware-based AO.
基于传统波前传感器的自适应光学(AO)技术面临诸多挑战,这些挑战导致在散射样本中性能不佳。无传感器闭环AO技术通过在可变形镜(DM)的不同状态下优化图像指标来克服这些挑战。这需要连续采集一系列图像进行优化——这对于动态体内样本来说是一项艰巨的任务。我们提出了一种技术,其中DM的不同状态改为使用计算自适应光学(CAO)进行模拟。通过对初始体积执行CAO以最小化图像指标来估计最佳波前,然后将该模式转换到DM上。在本文中,我们已在光谱域光学相干显微镜上展示了该技术的三种应用:实时深度方向像差校正、单次体积像差校正和焦深扩展。我们的技术克服了基于传感器的AO的缺点,与传统无传感器AO相比减少了图像采集次数,并保留了基于计算和基于硬件的AO的优点。