Suppr超能文献

基于计算自适应光学反馈的自动无传感器单次闭环自适应光学显微镜。

Automated sensorless single-shot closed-loop adaptive optics microscopy with feedback from computational adaptive optics.

作者信息

Iyer Rishyashring R, Liu Yuan-Zhi, Boppart Stephen A

出版信息

Opt Express. 2019 Apr 29;27(9):12998-13014. doi: 10.1364/OE.27.012998.

Abstract

Traditional wavefront-sensor-based adaptive optics (AO) techniques face numerous challenges that cause poor performance in scattering samples. Sensorless closed-loop AO techniques overcome these challenges by optimizing an image metric at different states of a deformable mirror (DM). This requires acquisition of a series of images continuously for optimization - an arduous task in dynamic in vivo samples. We present a technique where the different states of the DM are instead simulated using computational adaptive optics (CAO). The optimal wavefront is estimated by performing CAO on an initial volume to minimize an image metric, and then the pattern is translated to the DM. In this paper, we have demonstrated this technique on a spectral-domain optical coherence microscope for three applications: real-time depth-wise aberration correction, single-shot volumetric aberration correction, and extension of depth-of-focus. Our technique overcomes the disadvantages of sensor-based AO, reduces the number of image acquisitions compared to traditional sensorless AO, and retains the advantages of both computational and hardware-based AO.

摘要

基于传统波前传感器的自适应光学(AO)技术面临诸多挑战,这些挑战导致在散射样本中性能不佳。无传感器闭环AO技术通过在可变形镜(DM)的不同状态下优化图像指标来克服这些挑战。这需要连续采集一系列图像进行优化——这对于动态体内样本来说是一项艰巨的任务。我们提出了一种技术,其中DM的不同状态改为使用计算自适应光学(CAO)进行模拟。通过对初始体积执行CAO以最小化图像指标来估计最佳波前,然后将该模式转换到DM上。在本文中,我们已在光谱域光学相干显微镜上展示了该技术的三种应用:实时深度方向像差校正、单次体积像差校正和焦深扩展。我们的技术克服了基于传感器的AO的缺点,与传统无传感器AO相比减少了图像采集次数,并保留了基于计算和基于硬件的AO的优点。

相似文献

2
In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
Biomed Opt Express. 2015 Jan 16;6(2):580-90. doi: 10.1364/BOE.6.000580. eCollection 2015 Feb 1.
4
Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.
Opt Express. 2015 Sep 21;23(19):24587-601. doi: 10.1364/OE.23.024587.
5
Wavefront measurement using computational adaptive optics.
J Opt Soc Am A Opt Image Sci Vis. 2018 Mar 1;35(3):466-473. doi: 10.1364/JOSAA.35.000466.
6
7
Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.
J Opt Soc Am A Opt Image Sci Vis. 2014 Jun 1;31(6):1337-47. doi: 10.1364/JOSAA.31.001337.
9
Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction.
Biomed Opt Express. 2019 Aug 23;10(9):4757-4774. doi: 10.1364/BOE.10.004757. eCollection 2019 Sep 1.

引用本文的文献

2
Image metric-based multi-observation single-step deep deterministic policy gradient for sensorless adaptive optics.
Biomed Opt Express. 2024 Jul 23;15(8):4795-4814. doi: 10.1364/BOE.528579. eCollection 2024 Aug 1.
3
Adaptive optics for optical microscopy [Invited].
Biomed Opt Express. 2023 Mar 29;14(4):1732-1756. doi: 10.1364/BOE.479886. eCollection 2023 Apr 1.
4
Tunable image-mapping optical coherence tomography.
Biomed Opt Express. 2023 Jan 5;14(2):627-638. doi: 10.1364/BOE.477646. eCollection 2023 Feb 1.
5
Computational adaptive holographic fluorescence microscopy based on the stochastic parallel gradient descent algorithm.
Biomed Opt Express. 2022 Nov 15;13(12):6431-6442. doi: 10.1364/BOE.470959. eCollection 2022 Dec 1.
6
Adaptive optics for high-resolution imaging.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00066-7. Epub 2021 Oct 14.
8
Wavefront sensor-less adaptive optics using deep reinforcement learning.
Biomed Opt Express. 2021 Aug 6;12(9):5423-5438. doi: 10.1364/BOE.427970. eCollection 2021 Sep 1.
9
Closed-loop wavefront sensing and correction in the mouse brain with computed optical coherence microscopy.
Biomed Opt Express. 2021 Jul 16;12(8):4934-4954. doi: 10.1364/BOE.427979. eCollection 2021 Aug 1.

本文引用的文献

1
Handheld Adaptive Optics Scanning Laser Ophthalmoscope.
Optica. 2018 Sep 20;5(9):1027-1036. doi: 10.1364/OPTICA.5.001027. Epub 2018 Aug 23.
3
Phase recovery and holographic image reconstruction using deep learning in neural networks.
Light Sci Appl. 2018 Feb 23;7:17141. doi: 10.1038/lsa.2017.141. eCollection 2018.
4
Local wavefront mapping in tissue using computational adaptive optics OCT.
Opt Lett. 2019 Mar 1;44(5):1186-1189. doi: 10.1364/OL.44.001186.
5
Combined hardware and computational optical wavefront correction.
Biomed Opt Express. 2018 May 8;9(6):2562-2574. doi: 10.1364/BOE.9.002562. eCollection 2018 Jun 1.
6
Volumetric optical coherence microscopy with a high space-bandwidth- product enabled by hybrid adaptive optics.
Biomed Opt Express. 2018 Jun 15;9(7):3137-3152. doi: 10.1364/BOE.9.003137. eCollection 2018 Jul 1.
7
Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy.
Nat Commun. 2018 May 29;9(1):2125. doi: 10.1038/s41467-018-04470-8.
8
Wavefront measurement using computational adaptive optics.
J Opt Soc Am A Opt Image Sci Vis. 2018 Mar 1;35(3):466-473. doi: 10.1364/JOSAA.35.000466.
9
Computational optical coherence tomography [Invited].
Biomed Opt Express. 2017 Feb 16;8(3):1549-1574. doi: 10.1364/BOE.8.001549. eCollection 2017 Mar 1.
10
Aberration-free volumetric high-speed imaging of in vivo retina.
Sci Rep. 2016 Oct 20;6:35209. doi: 10.1038/srep35209.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验