Norville Casey A, Smith Kyle Z, Dawson Jeremy M
Appl Opt. 2020 Mar 10;59(8):2308-2318. doi: 10.1364/AO.384653.
We report the exploitation of spectroplasmonics for innovations in optical transducer development, specifically in the well-established application of labeled fluorescent analytes known as fluorescence spectroscopy. Presented herein are comprehensive analyses of nanoscale plasmonic lattice feature geometries using finite-difference time-domain software to determine the largest surface electric ($E$E) field enhancement resulting from localized surface plasmon resonance for reducing the limit of detection of plasmon-enhanced fluorescence. This parametric optimization of the critical dimensions of the plasmon resonance of noble metal nanostructures will enable improved excitation and emission enhancement of fluorophores used in visible wavelength fluorescence spectroscopy.
我们报告了光谱等离子体激元学在光学换能器开发创新中的应用,特别是在成熟的标记荧光分析物应用即荧光光谱学方面。本文介绍了使用时域有限差分软件对纳米级等离子体晶格特征几何结构进行的综合分析,以确定由局域表面等离子体共振产生的最大表面电场($E$)增强,从而降低等离子体增强荧光的检测限。对贵金属纳米结构等离子体共振关键尺寸的这种参数优化,将能够改善用于可见波长荧光光谱学的荧光团的激发和发射增强。