Rehak Florian R, Piccini GiovanniMaria, Alessio Maristella, Sauer Joachim
Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
Phys Chem Chem Phys. 2020 Apr 8;22(14):7577-7585. doi: 10.1039/d0cp00394h.
We examine the performance of nine commonly used methods for including dispersion interactions in density functional theory (DFT): three different parametrizations of damped 1/Rn terms (n = 6, 8, …) added to the DFT energy (Grimme's D2 and D3 parameterizations as well as that of Tkatchenko and Scheffler), three different implementations of the many-body dispersion approach (MBD, MBD/HI and MBD/FI), the density-dependent energy correction, called dDsC, and two "first generation" van der Waals density functionals, revPBE-vdW and optB86b-vdW. As test set we use eight molecule-surface systems for which agreement has been reached between experiment and hybrid QM:QM calculations within chemical accuracy limits (±4.2 kJ mol-1). It includes adsorption of carbon monoxide and dioxide in the Mg2(2,5-dioxido-1,4-benzenedicarboxylate) metal-organic framework (Mg-MOF-74, CPO-27-Mg), adsorption of carbon monoxide as well as of monolayers of methane and ethane on the MgO(001) surface, as well as adsorption of methane, ethane and propane in H-chabazite (H-CHA). D2 with Ne parameters for Mg2+, D2(Ne), MBD/HI and MBD/FI perform best. With the PBE functional, the mean unsigned errors are 6.1, 5.6 and 5.4 kJ mol-1, respectively.
我们研究了九种在密度泛函理论(DFT)中纳入色散相互作用的常用方法的性能:三种不同参数化的添加到DFT能量中的阻尼1/Rⁿ项(n = 6、8等)(格林(Grimme)的D2和D3参数化以及特卡琴科(Tkatchenko)和舍弗勒(Scheffler)的参数化)、多体色散方法(MBD)的三种不同实现方式(MBD/HI和MBD/FI)、称为dDsC的密度依赖能量校正以及两种“第一代”范德华密度泛函revPBE-vdW和optB86b-vdW。作为测试集,我们使用了八个分子-表面体系,在这些体系中,实验与混合量子力学:量子力学计算在化学精度极限(±4.2 kJ mol⁻¹)内达成了一致。它包括一氧化碳和二氧化碳在Mg₂(2,5-二氧代-1,4-苯二甲酸酯)金属有机框架(Mg-MOF-74,CPO-27-Mg)中的吸附、一氧化碳以及甲烷和乙烷单层在MgO(001)表面的吸附,以及甲烷、乙烷和丙烷在H-菱沸石(H-CHA)中的吸附。带有Mg²⁺的Ne参数的D2(D2(Ne))、MBD/HI和MBD/FI表现最佳。使用PBE泛函时,平均绝对误差分别为6.1、5.6和5.4 kJ mol⁻¹。