Suppr超能文献

用于估计面板数据有序刻板逻辑模型的广义估计方程。

Generalized estimating equations to estimate the ordered stereotype logit model for panel data.

作者信息

Spiess Martin, Fernández Daniel, Nguyen Thuong, Liu Ivy

机构信息

Psychological Methods and Statistics, Hamburg University, Hamburg, Germany.

Serra Húnter fellow. Department of Statistics and Operations Research, Polytechnic University of Catalonia-BarcelonaTech, 08028, Barcelona, Spain.

出版信息

Stat Med. 2020 Jun 30;39(14):1919-1940. doi: 10.1002/sim.8520. Epub 2020 Mar 30.

Abstract

By modeling the effects of predictor variables as a multiplicative function of regression parameters being invariant over categories, and category-specific scalar effects, the ordered stereotype logit model is a flexible regression model for ordinal response variables. In this article, we propose a generalized estimating equations (GEE) approach to estimate the ordered stereotype logit model for panel data based on working covariance matrices, which are not required to be correctly specified. A simulation study compares the performance of GEE estimators based on various working correlation matrices and working covariance matrices using local odds ratios. Estimation of the model is illustrated using a real-world dataset. The results from the simulation study suggest that GEE estimation of this model is feasible in medium-sized and large samples and that estimators based on local odds ratios as realized in this study tend to be less efficient compared with estimators based on a working correlation matrix. For low true correlations, the efficiency gains seem to be rather small and if the working covariance structure is too flexible, the corresponding estimator may even be less efficient compared with the GEE estimator assuming independence. Like for GEE estimators more generally, if the true correlations over time are high, then a working covariance structure which is close to the true structure can lead to considerable efficiency gains compared with assuming independence.

摘要

通过将预测变量的影响建模为回归参数在类别间不变的乘法函数以及特定类别的标量效应,有序刻板逻辑模型是一种用于有序响应变量的灵活回归模型。在本文中,我们提出一种广义估计方程(GEE)方法,基于工作协方差矩阵来估计面板数据的有序刻板逻辑模型,这些工作协方差矩阵无需正确设定。一项模拟研究使用局部优势比比较了基于各种工作相关矩阵和工作协方差矩阵的GEE估计量的性能。使用一个真实世界数据集说明了该模型的估计过程。模拟研究结果表明,该模型的GEE估计在中型和大型样本中是可行的,并且与基于工作相关矩阵的估计量相比,本研究中基于局部优势比实现的估计量往往效率较低。对于低真实相关性,效率提升似乎相当小,并且如果工作协方差结构过于灵活,与假设独立性的GEE估计量相比,相应的估计量甚至可能效率更低。与更一般的GEE估计量一样,如果随时间的真实相关性较高,那么与假设独立性相比,接近真实结构的工作协方差结构可以带来相当大的效率提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验