Touloumis Anestis, Agresti Alan, Kateri Maria
EMBL-European Bioinformatics Institute, Hinxton, U.K.
Biometrics. 2013 Sep;69(3):633-40. doi: 10.1111/biom.12054. Epub 2013 May 31.
In this article, we propose a generalized estimating equations (GEE) approach for correlated ordinal or nominal multinomial responses using a local odds ratios parameterization. Our motivation lies upon observing that: (i) modeling the dependence between correlated multinomial responses via the local odds ratios is meaningful both for ordinal and nominal response scales and (ii) ordinary GEE methods might not ensure the joint existence of the estimates of the marginal regression parameters and of the dependence structure. To avoid (ii), we treat the so-called "working" association vector α as a "nuisance" parameter vector that defines the local odds ratios structure at the marginalized contingency tables after tabulating the responses without a covariate adjustment at each time pair. To estimate α and simultaneously approximate adequately possible underlying dependence structures, we employ the family of association models proposed by Goodman. In simulations, the parameter estimators with the proposed GEE method for a marginal cumulative probit model appear to be less biased and more efficient than those with the independence "working" model, especially for studies having time-varying covariates and strong correlation.
在本文中,我们提出了一种广义估计方程(GEE)方法,用于使用局部优势比参数化来处理相关的有序或名义多项响应。我们的动机基于以下观察结果:(i)通过局部优势比来建模相关多项响应之间的依赖性,对于有序和名义响应尺度而言都是有意义的;(ii)普通的GEE方法可能无法确保边际回归参数估计值和依赖性结构估计值的联合存在性。为了避免(ii),我们将所谓的“工作”关联向量α视为一个“干扰”参数向量,该向量在对每次时间对的响应进行制表而不进行协变量调整后,定义了边际列联表中的局部优势比结构。为了估计α并同时充分近似可能的潜在依赖性结构,我们采用了古德曼提出的关联模型族。在模拟中,对于边际累积概率单位模型,所提出的GEE方法的参数估计值似乎比独立“工作”模型的参数估计值偏差更小且效率更高,特别是对于具有随时间变化的协变量和强相关性的研究。