Suppr超能文献

用于联网神经假体系统的96通道神经接口模块的设计与测试。

Design and testing of a 96-channel neural interface module for the Networked Neuroprosthesis system.

作者信息

Bullard Autumn J, Nason Samuel R, Irwin Zachary T, Nu Chrono S, Smith Brian, Campean Alex, Peckham P Hunter, Kilgore Kevin L, Willsey Matthew S, Patil Parag G, Chestek Cynthia A

机构信息

1Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA.

2Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA.

出版信息

Bioelectron Med. 2019 Feb 15;5:3. doi: 10.1186/s42234-019-0019-x. eCollection 2019.

Abstract

BACKGROUND

The loss of motor functions resulting from spinal cord injury can have devastating implications on the quality of one's life. Functional electrical stimulation has been used to help restore mobility, however, current functional electrical stimulation (FES) systems require residual movements to control stimulation patterns, which may be unintuitive and not useful for individuals with higher level cervical injuries. Brain machine interfaces (BMI) offer a promising approach for controlling such systems; however, they currently still require transcutaneous leads connecting indwelling electrodes to external recording devices. While several wireless BMI systems have been designed, high signal bandwidth requirements limit clinical translation. Case Western Reserve University has developed an implantable, modular FES system, the Networked Neuroprosthesis (NNP), to perform combinations of myoelectric recording and neural stimulation for controlling motor functions. However, currently the existing module capabilities are not sufficient for intracortical recordings.

METHODS

Here we designed and tested a 1 × 4 cm, 96-channel neural recording module prototype to fit within the specifications to mate with the NNP. The neural recording module extracts power between 0.3-1 kHz, instead of transmitting the raw, high bandwidth neural data to decrease power requirements.

RESULTS

The module consumed 33.6 mW while sampling 96 channels at approximately 2 kSps. We also investigated the relationship between average spiking band power and neural spike rate, which produced a maximum correlation of R = 0.8656 (Monkey N) and R = 0.8023 (Monkey W).

CONCLUSION

Our experimental results show that we can record and transmit 96 channels at 2ksps within the power restrictions of the NNP system and successfully communicate over the NNP network. We believe this device can be used as an extension to the NNP to produce a clinically viable, fully implantable, intracortically-controlled FES system and advance the field of bioelectronic medicine.

摘要

背景

脊髓损伤导致的运动功能丧失会对个人生活质量产生毁灭性影响。功能性电刺激已被用于帮助恢复活动能力,然而,目前的功能性电刺激(FES)系统需要残余运动来控制刺激模式,这对于高位颈髓损伤患者可能不直观且无用。脑机接口(BMI)为控制此类系统提供了一种有前景的方法;然而,它们目前仍需要经皮导线将植入电极连接到外部记录设备。虽然已经设计了几种无线BMI系统,但高信号带宽要求限制了其临床应用。凯斯西储大学开发了一种可植入的模块化FES系统,即网络化神经假体(NNP),用于进行肌电记录和神经刺激组合以控制运动功能。然而,目前现有的模块功能不足以进行皮层内记录。

方法

在此,我们设计并测试了一个1×4厘米、96通道的神经记录模块原型,以符合与NNP匹配的规格。该神经记录模块提取0.3 - 1千赫兹之间的功率,而不是传输原始的高带宽神经数据,以降低功率需求。

结果

该模块在以约2千样本每秒采样96通道时消耗33.6毫瓦。我们还研究了平均尖峰带功率与神经尖峰率之间的关系,其最大相关性为R = 0.8656(猴子N)和R = 0.8023(猴子W)。

结论

我们的实验结果表明,我们能够在NNP系统的功率限制内以2千样本每秒记录并传输96通道的数据,并成功通过NNP网络进行通信。我们相信该设备可作为NNP的扩展,以产生临床上可行的、完全可植入的、皮层内控制的FES系统,并推动生物电子医学领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2300/7098219/b60b1808da08/42234_2019_19_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验