Suppr超能文献

植入式分布式神经假肢系统中的刺激和肌电记录模块的设计与测试。

Design and Testing of Stimulation and Myoelectric Recording Modules in an Implanted Distributed Neuroprosthetic System.

出版信息

IEEE Trans Biomed Circuits Syst. 2021 Apr;15(2):281-293. doi: 10.1109/TBCAS.2021.3066838. Epub 2021 May 25.

Abstract

Implantable motor neuroprostheses can restore functionality to individuals with neurological disabilities by electrically activating paralyzed muscles in coordinated patterns. The typical design of neuroprosthetic systems relies on a single multi-use device, but this limits the number of stimulus and sensor channels that can be practically implemented. To address this limitation, a modular neuroprosthesis, the "Networked Neuroprosthesis" (NNP), was developed. The NNP system is the first fully implanted modular neuroprosthesis that includes implantation of all power, signal processing, biopotential signal recording, and stimulating components. This paper describes the design of stimulation and recording modules, bench testing to verify stimulus outputs and appropriate filtering and recording, and validation that the components function properly while implemented in persons with spinal cord injury. The results of system testing demonstrated that the NNP was functional and capable of generating stimulus pulses and recording myoelectric, temperature, and accelerometer signals. Based on the successful design, manufacturing, and testing of the NNP System, multiple clinical applications are anticipated.

摘要

可植入式运动神经假体可以通过以协调的模式电激活瘫痪的肌肉,从而为患有神经功能障碍的个体恢复功能。神经假体系统的典型设计依赖于单个多用途设备,但这限制了实际可实现的刺激和传感器通道的数量。为了解决这一限制,开发了一种模块化神经假体,即“网络神经假体”(NNP)。NNP 系统是第一个完全植入式模块化神经假体,包括植入所有电源、信号处理、生物电势信号记录和刺激组件。本文描述了刺激和记录模块的设计、验证刺激输出和适当滤波和记录的台架测试,以及验证组件在脊髓损伤患者中正常运行的情况。系统测试的结果表明,NNP 是功能齐全的,能够产生刺激脉冲,并记录肌电、温度和加速度计信号。基于 NNP 系统的成功设计、制造和测试,预计将有多种临床应用。

相似文献

1
Design and Testing of Stimulation and Myoelectric Recording Modules in an Implanted Distributed Neuroprosthetic System.
IEEE Trans Biomed Circuits Syst. 2021 Apr;15(2):281-293. doi: 10.1109/TBCAS.2021.3066838. Epub 2021 May 25.
3
Design and testing of an advanced implantable neuroprosthesis with myoelectric control.
IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):45-53. doi: 10.1109/TNSRE.2010.2079952. Epub 2010 Sep 27.
4
Design and testing of a 96-channel neural interface module for the Networked Neuroprosthesis system.
Bioelectron Med. 2019 Feb 15;5:3. doi: 10.1186/s42234-019-0019-x. eCollection 2019.
5
Neuroprosthetic technology for individuals with spinal cord injury.
J Spinal Cord Med. 2013 Jul;36(4):258-72. doi: 10.1179/2045772313Y.0000000128.
6
An implanted myoelectrically-controlled neuroprosthesis for upper extremity function in spinal cord injury.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1630-3. doi: 10.1109/IEMBS.2006.259939.
8
Implanted stimulators for restoration of function in spinal cord injury.
Med Eng Phys. 2001 Jan;23(1):19-28. doi: 10.1016/s1350-4533(01)00012-1.
9
Neuroprosthesis for individuals with spinal cord injury.
Neurol Res. 2023 Oct;45(10):893-905. doi: 10.1080/01616412.2020.1798106. Epub 2020 Jul 30.
10
Powering strategies for implanted multi-function neuroprostheses for spinal cord injury.
Healthc Technol Lett. 2020 Jun 24;7(3):81-86. doi: 10.1049/htl.2019.0113. eCollection 2020 Jun.

引用本文的文献

2
Overcoming failure: improving acceptance and success of implanted neural interfaces.
Bioelectron Med. 2025 Mar 14;11(1):6. doi: 10.1186/s42234-025-00168-7.
3
A new modular neuroprosthesis suitable for hybrid FES-robot applications and tailored assistance.
J Neuroeng Rehabil. 2024 Sep 4;21(1):153. doi: 10.1186/s12984-024-01450-6.
6
Trunk Posture from Randomly Oriented Accelerometers.
Sensors (Basel). 2022 Oct 10;22(19):7690. doi: 10.3390/s22197690.
7
Adaptation Strategies for Personalized Gait Neuroprosthetics.
Front Neurorobot. 2021 Dec 16;15:750519. doi: 10.3389/fnbot.2021.750519. eCollection 2021.

本文引用的文献

1
Developing Collaborative Platforms to Advance Neurotechnology and Its Translation.
Neuron. 2020 Oct 28;108(2):286-301. doi: 10.1016/j.neuron.2020.10.001.
2
SenseBack - An Implantable System for Bidirectional Neural Interfacing.
IEEE Trans Biomed Circuits Syst. 2020 Sep 10;PP. doi: 10.1109/TBCAS.2020.3022839.
3
Powering strategies for implanted multi-function neuroprostheses for spinal cord injury.
Healthc Technol Lett. 2020 Jun 24;7(3):81-86. doi: 10.1049/htl.2019.0113. eCollection 2020 Jun.
4
Neuroprosthesis for individuals with spinal cord injury.
Neurol Res. 2023 Oct;45(10):893-905. doi: 10.1080/01616412.2020.1798106. Epub 2020 Jul 30.
5
Design and testing of a 96-channel neural interface module for the Networked Neuroprosthesis system.
Bioelectron Med. 2019 Feb 15;5:3. doi: 10.1186/s42234-019-0019-x. eCollection 2019.
6
A 0.338 cm, Artifact-Free, 64-Contact Neuromodulation Platform for Simultaneous Stimulation and Sensing.
IEEE Trans Biomed Circuits Syst. 2019 Feb;13(1):38-55. doi: 10.1109/TBCAS.2018.2889040. Epub 2018 Dec 21.
7
Long-Term Performance and User Satisfaction With Implanted Neuroprostheses for Upright Mobility After Paraplegia: 2- to 14-Year Follow-Up.
Arch Phys Med Rehabil. 2018 Feb;99(2):289-298. doi: 10.1016/j.apmr.2017.08.470. Epub 2017 Sep 9.
8
Improving Walking with an Implanted Neuroprosthesis for Hip, Knee, and Ankle Control After Stroke.
Am J Phys Med Rehabil. 2016 Dec;95(12):880-888. doi: 10.1097/PHM.0000000000000533.
9
Functional electrical stimulation and spinal cord injury.
Phys Med Rehabil Clin N Am. 2014 Aug;25(3):631-54, ix. doi: 10.1016/j.pmr.2014.05.001.
10
Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
IEEE Trans Neural Syst Rehabil Eng. 2014 Nov;22(6):1138-47. doi: 10.1109/TNSRE.2014.2324825. Epub 2014 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验