Suppr超能文献

使用核磁共振代谢组学分析预测骨骼肌和全身胰岛素敏感性

Predicting Skeletal Muscle and Whole-Body Insulin Sensitivity Using NMR-Metabolomic Profiling.

作者信息

Klén Riku, Honka Miikka-Juhani, Hannukainen Jarna C, Huovinen Ville, Bucci Marco, Latva-Rasku Aino, Venäläinen Mikko S, Kalliokoski Kari K, Virtanen Kirsi A, Lautamäki Riikka, Iozzo Patricia, Elo Laura L, Nuutila Pirjo

机构信息

Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.

Turku PET Centre, University of Turku, Turku, Finland.

出版信息

J Endocr Soc. 2020 Mar 11;4(4):bvaa026. doi: 10.1210/jendso/bvaa026. eCollection 2020 Apr 1.

Abstract

PURPOSE

Abnormal lipoprotein and amino acid profiles are associated with insulin resistance and may help to identify this condition. The aim of this study was to create models estimating skeletal muscle and whole-body insulin sensitivity using fasting metabolite profiles and common clinical and laboratory measures.

MATERIAL AND METHODS

The cross-sectional study population included 259 subjects with normal or impaired fasting glucose or type 2 diabetes in whom skeletal muscle and whole-body insulin sensitivity (M-value) were measured during euglycemic hyperinsulinemic clamp. Muscle glucose uptake (GU) was measured directly using [F]FDG-PET. Serum metabolites were measured using nuclear magnetic resonance (NMR) spectroscopy. We used linear regression to build the models for the muscle GU (Muscle-insulin sensitivity index [ISI]) and M-value (whole-body [WB]-ISI). The models were created and tested using randomly selected training (n = 173) and test groups (n = 86). The models were compared to common fasting indices of insulin sensitivity, homeostatic model assessment-insulin resistance (HOMA-IR) and the revised quantitative insulin sensitivity check index (QUICKI).

RESULTS

WB-ISI had higher correlation with actual M-value than HOMA-IR or revised QUICKI ( = 0.83 vs -0.67 and 0.66;  < 0.05 for both comparisons), whereas the correlation of Muscle-ISI with the actual skeletal muscle GU was not significantly stronger than HOMA-IR's or revised QUICKI's ( = 0.67 vs -0.58 and 0.59; both nonsignificant) in the test dataset.

CONCLUSION

Muscle-ISI and WB-ISI based on NMR-metabolomics and common laboratory measurements from fasting serum samples and basic anthropometrics are promising rapid and inexpensive tools for determining insulin sensitivity in at-risk individuals.

摘要

目的

脂蛋白和氨基酸谱异常与胰岛素抵抗相关,可能有助于识别这种情况。本研究的目的是利用空腹代谢物谱以及常见的临床和实验室指标创建模型,以估计骨骼肌和全身胰岛素敏感性。

材料与方法

横断面研究人群包括259名空腹血糖正常或受损或患有2型糖尿病的受试者,在正常血糖高胰岛素钳夹期间测量其骨骼肌和全身胰岛素敏感性(M值)。使用[F]FDG-PET直接测量肌肉葡萄糖摄取(GU)。使用核磁共振(NMR)光谱法测量血清代谢物。我们使用线性回归建立肌肉GU(肌肉胰岛素敏感性指数[ISI])和M值(全身[WB]-ISI)的模型。使用随机选择的训练组(n = 173)和测试组(n = 86)创建并测试模型。将这些模型与胰岛素敏感性的常见空腹指标、稳态模型评估-胰岛素抵抗(HOMA-IR)和修订的定量胰岛素敏感性检查指数(QUICKI)进行比较。

结果

在测试数据集中,WB-ISI与实际M值的相关性高于HOMA-IR或修订的QUICKI(分别为0.83对-0.67和0.66;两次比较均P<0.05),而肌肉ISI与实际骨骼肌GU的相关性并不比HOMA-IR或修订的QUICKI显著更强(分别为0.67对-0.58和0.59;均无统计学意义)。

结论

基于NMR代谢组学以及空腹血清样本的常见实验室测量和基本人体测量学的肌肉ISI和WB-ISI,是用于确定高危个体胰岛素敏感性的有前景的快速且廉价的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1350/7093091/c6ade1ed143a/bvaa026f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验