Suppr超能文献

一类具有高电化学稳定性的离子导电氟化醚电解质

A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability.

作者信息

Amanchukwu Chibueze V, Yu Zhiao, Kong Xian, Qin Jian, Cui Yi, Bao Zhenan

机构信息

Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.

出版信息

J Am Chem Soc. 2020 Apr 22;142(16):7393-7403. doi: 10.1021/jacs.9b11056. Epub 2020 Apr 13.

Abstract

Increasing battery energy density is greatly desired for applications such as portable electronics and transportation. However, many next-generation batteries are limited by electrolyte selection because high ionic conductivity and poor electrochemical stability are typically observed in most electrolytes. For example, ether-based electrolytes have high ionic conductivity but are oxidatively unstable above 4 V, which prevents the use of high-voltage cathodes that promise higher energy densities. In contrast, hydrofluoroethers (HFEs) have high oxidative stability but do not dissolve lithium salt. In this work, we synthesize a new class of fluorinated ether electrolytes that combine the oxidative stability of HFEs with the ionic conductivity of ethers in a single compound. We show that conductivities of up to 2.7 × 10 S/cm (at 30 °C) can be obtained with oxidative stability up to 5.6 V. The compounds also show higher lithium transference numbers compared to typical ethers. Furthermore, we use nuclear magnetic resonance (NMR) and molecular dynamics (MD) to study their ionic transport behavior and ion solvation environment, respectively. Finally, we demonstrate that this new class of electrolytes can be used with a Ni-rich layered cathode (NMC 811) to obtain over 100 cycles at a C/5 rate. The design of new molecules with high ionic conductivity and high electrochemical stability is a novel approach for the rational design of next-generation batteries.

摘要

对于便携式电子设备和交通运输等应用而言,提高电池能量密度是非常必要的。然而,许多下一代电池受到电解质选择的限制,因为大多数电解质通常具有高离子电导率和较差的电化学稳定性。例如,醚基电解质具有高离子电导率,但在4V以上氧化不稳定,这阻止了使用有望实现更高能量密度的高压阴极。相比之下,氢氟醚(HFE)具有高氧化稳定性,但不能溶解锂盐。在这项工作中,我们合成了一类新型的氟化醚电解质,它在单一化合物中结合了HFE的氧化稳定性和醚的离子电导率。我们表明,在高达5.6V的氧化稳定性下,可获得高达2.7×10 S/cm(在30°C时)的电导率。与典型的醚相比,这些化合物还显示出更高的锂迁移数。此外,我们分别使用核磁共振(NMR)和分子动力学(MD)来研究它们的离子传输行为和离子溶剂化环境。最后,我们证明了这类新型电解质可与富镍层状阴极(NMC 811)一起使用,在C/5速率下实现超过100次循环。设计具有高离子电导率和高电化学稳定性的新分子是合理设计下一代电池的一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验