Zhang Elizabeth, Chen Yuelang, Holoubek John, Yu Zhiao, Zhang Wenbo, Lyu Hao, Choi Il Rok, Kim Sang Cheol, Serrao Chad, Cui Yi, Bao Zhenan
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2418623122. doi: 10.1073/pnas.2418623122. Epub 2025 Jan 7.
High degree of fluorination for ether electrolytes has resulted in improved cycling stability of lithium metal batteries due to stable solid electrolyte interphase (SEI) formation and good oxidative stability. However, the sluggish ion transport and environmental concerns of high fluorination degree drive the need to develop less fluorinated structures. Here, we depart from the traditional ether backbone and introduce bis(2-fluoroethoxy)methane (F2DEM), featuring monofluorination of the acetal backbone. High coulombic efficiency and stable long-term cycling in Li||Cu half cells can be achieved with F2DEM even under fast Li metal plating conditions. The performance of F2DEM is further compared with diethoxymethane (DEM) and 2-[2-(2,2-difluoroethoxy)ethoxy]-1,1,1-trifluoroethane (F5DEE). A significantly lower overpotential is observed with F2DEM, which improves energy efficiency and enables its application in high-rate conditions. Comparative studies of F2DEM with DEM and F5DEE in anode-free lithium iron phosphate (LiFePO) LFP pouch cells and high-loading LFP coin cells further show improved capacity retention of F2DEM electrolyte, demonstrating its practical applicability. More importantly, we also extensively investigate the underlying mechanism for the superior performance of F2DEM through various techniques, including X-ray photoelectron spectroscopy, scanning electron microscopy, cryogenic electron microscopy, focused ion beam, electrochemical impedance spectroscopy, and titration gas chromatography. Overall, F2DEM facilitates improved Li deposition morphology with reduced amount of dead Li. This enables F2DEM to show superior performance, especially under higher charging and slower discharging rate conditions.
醚类电解质的高氟化程度由于形成了稳定的固体电解质界面(SEI)并具有良好的氧化稳定性,从而提高了锂金属电池的循环稳定性。然而,高氟化程度导致的离子传输缓慢以及环境问题促使人们需要开发氟化程度较低的结构。在此,我们摒弃了传统的醚类主链,引入了双(2-氟乙氧基)甲烷(F2DEM),其具有缩醛主链的单氟化特征。即使在快速锂金属电镀条件下,F2DEM在Li||Cu半电池中也能实现高库仑效率和稳定的长期循环。将F2DEM的性能与二乙氧基甲烷(DEM)和2-[2-(2,2-二氟乙氧基)乙氧基]-1,1,1-三氟乙烷(F5DEE)进行了进一步比较。F2DEM的过电位显著更低,这提高了能量效率并使其能够应用于高倍率条件下。在无阳极磷酸铁锂(LiFePO)LFP软包电池和高负载LFP硬币电池中对F2DEM与DEM和F5DEE进行的对比研究进一步表明,F2DEM电解质的容量保持率有所提高,证明了其实际适用性。更重要的是,我们还通过各种技术广泛研究了F2DEM优异性能的潜在机制,包括X射线光电子能谱、扫描电子显微镜、低温电子显微镜、聚焦离子束、电化学阻抗谱和滴定气相色谱。总体而言,F2DEM有助于改善锂沉积形态,减少死锂的数量。这使得F2DEM表现出优异的性能,尤其是在较高充电和较慢放电速率条件下。