Suppr超能文献

深度进化分析揭示了折叠 A 糖基转移酶的设计原则。

Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases.

机构信息

Institute of Bioinformatics, University of Georgia, Athens, Georgia.

Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia.

出版信息

Elife. 2020 Apr 1;9:e54532. doi: 10.7554/eLife.54532.

Abstract

Glycosyltransferases (GTs) are prevalent across the tree of life and regulate nearly all aspects of cellular functions. The evolutionary basis for their complex and diverse modes of catalytic functions remain enigmatic. Here, based on deep mining of over half million GT-A fold sequences, we define a minimal core component shared among functionally diverse enzymes. We find that variations in the common core and emergence of hypervariable loops extending from the core contributed to GT-A diversity. We provide a phylogenetic framework relating diverse GT-A fold families for the first time and show that inverting and retaining mechanisms emerged multiple times independently during evolution. Using evolutionary information encoded in primary sequences, we trained a machine learning classifier to predict donor specificity with nearly 90% accuracy and deployed it for the annotation of understudied GTs. Our studies provide an evolutionary framework for investigating complex relationships connecting GT-A fold sequence, structure, function and regulation.

摘要

糖基转移酶(GTs)广泛存在于生命之树中,调节着细胞功能的几乎所有方面。它们复杂多样的催化功能的进化基础仍然是个谜。在这里,我们通过对超过 50 万个 GT-A 折叠序列的深度挖掘,定义了功能多样的酶共有的最小核心组件。我们发现,核心的共同变化和从核心延伸的超变环的出现导致了 GT-A 的多样性。我们首次提供了一个与不同 GT-A 折叠家族相关的系统发育框架,并表明在进化过程中,反转和保留机制多次独立出现。我们利用初级序列中编码的进化信息,训练了一个机器学习分类器来预测供体特异性,准确率接近 90%,并将其用于研究研究较少的 GT 的注释。我们的研究为研究 GT-A 折叠序列、结构、功能和调节之间复杂关系提供了一个进化框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d077/7185993/fd5c5dd55790/elife-54532-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验