Suppr超能文献

复杂环境中具有吸引子动力学和振荡计算的认知集群行为

Cognitive swarming in complex environments with attractor dynamics and oscillatory computing.

作者信息

Monaco Joseph D, Hwang Grace M, Schultz Kevin M, Zhang Kechen

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

The Johns Hopkins University/Applied Physics Laboratory, Laurel, MD, 20723, USA.

出版信息

Biol Cybern. 2020 Apr;114(2):269-284. doi: 10.1007/s00422-020-00823-z. Epub 2020 Mar 31.

Abstract

Neurobiological theories of spatial cognition developed with respect to recording data from relatively small and/or simplistic environments compared to animals' natural habitats. It has been unclear how to extend theoretical models to large or complex spaces. Complementarily, in autonomous systems technology, applications have been growing for distributed control methods that scale to large numbers of low-footprint mobile platforms. Animals and many-robot groups must solve common problems of navigating complex and uncertain environments. Here, we introduce the NeuroSwarms control framework to investigate whether adaptive, autonomous swarm control of minimal artificial agents can be achieved by direct analogy to neural circuits of rodent spatial cognition. NeuroSwarms analogizes agents to neurons and swarming groups to recurrent networks. We implemented neuron-like agent interactions in which mutually visible agents operate as if they were reciprocally connected place cells in an attractor network. We attributed a phase state to agents to enable patterns of oscillatory synchronization similar to hippocampal models of theta-rhythmic (5-12 Hz) sequence generation. We demonstrate that multi-agent swarming and reward-approach dynamics can be expressed as a mobile form of Hebbian learning and that NeuroSwarms supports a single-entity paradigm that directly informs theoretical models of animal cognition. We present emergent behaviors including phase-organized rings and trajectory sequences that interact with environmental cues and geometry in large, fragmented mazes. Thus, NeuroSwarms is a model artificial spatial system that integrates autonomous control and theoretical neuroscience to potentially uncover common principles to advance both domains.

摘要

与动物的自然栖息地相比,空间认知的神经生物学理论是根据在相对较小和/或简单化环境中记录的数据发展而来的。目前尚不清楚如何将理论模型扩展到大型或复杂空间。与之互补的是,在自主系统技术中,分布式控制方法的应用不断增加,这些方法可扩展到大量低占用移动平台。动物和多机器人群体必须解决在复杂和不确定环境中导航的常见问题。在此,我们引入NeuroSwarms控制框架,以研究是否可以通过直接类比啮齿动物空间认知的神经回路来实现对最小人工智能体的自适应、自主群体控制。NeuroSwarms将智能体类比为神经元,将群体类比为递归网络。我们实现了类似神经元的智能体交互,其中相互可见的智能体的运作方式就好像它们是吸引子网络中相互连接的位置细胞一样。我们为智能体赋予了相位状态,以实现类似于海马体θ节律(5-12赫兹)序列生成模型的振荡同步模式。我们证明,多智能体群体行为和奖励趋近动态可以表示为一种移动形式的赫布学习,并且NeuroSwarms支持一种单实体范式,该范式直接为动物认知的理论模型提供信息。我们展示了涌现行为,包括在大型、碎片化迷宫中与环境线索和几何形状相互作用的相位组织环和轨迹序列。因此,NeuroSwarms是一个模型人工空间系统,它整合了自主控制和理论神经科学,有可能揭示共同原理以推动这两个领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45b6/7183509/6cbd22837bb5/422_2020_823_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验