Suppr超能文献

层状纳米结构共晶锌铝合金作为水系可充电电池的可逆无枝晶阳极。

Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries.

作者信息

Wang Sheng-Bo, Ran Qing, Yao Rui-Qi, Shi Hang, Wen Zi, Zhao Ming, Lang Xing-You, Jiang Qing

机构信息

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China.

出版信息

Nat Commun. 2020 Apr 2;11(1):1634. doi: 10.1038/s41467-020-15478-4.

Abstract

Metallic zinc is an attractive anode material for aqueous rechargeable batteries because of its high theoretical capacity and low cost. However, state-of-the-art zinc anodes suffer from low coulombic efficiency and severe dendrite growth during stripping/plating processes, hampering their practical applications. Here we show that eutectic-composition alloying of zinc and aluminum as an effective strategy substantially tackles these irreversibility issues by making use of their lamellar structure, composed of alternating zinc and aluminum nanolamellas. The lamellar nanostructure not only promotes zinc stripping from precursor eutectic ZnAl (at%) alloys, but produces core/shell aluminum/aluminum sesquioxide interlamellar nanopatterns in situ to in turn guide subsequent growth of zinc, enabling dendrite-free zinc stripping/plating for more than 2000 h in oxygen-absent aqueous electrolyte. These outstanding electrochemical properties enlist zinc-ion batteries constructed with ZnAl alloy anode and KMnO cathode to deliver high-density energy at high levels of electrical power and retain 100% capacity after 200 hours.

摘要

金属锌因其高理论容量和低成本,是水系可充电电池颇具吸引力的阳极材料。然而,目前的锌阳极在剥离/电镀过程中存在库仑效率低和严重枝晶生长的问题,阻碍了它们的实际应用。在此我们表明,锌和铝的共晶成分合金化作为一种有效策略,通过利用由交替的锌和铝纳米薄片组成的层状结构,可大幅解决这些不可逆问题。这种层状纳米结构不仅促进了锌从前体共晶ZnAl(原子百分比)合金中的剥离,还原位生成了核/壳结构的铝/三氧化二铝层间纳米图案,进而引导锌的后续生长,使得在无氧水系电解质中实现无枝晶的锌剥离/电镀超过2000小时。这些出色的电化学性能使采用ZnAl合金阳极和KMnO阴极构建的锌离子电池能够在高功率水平下提供高密度能量,并在200小时后保持100%的容量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbba/7118111/30388c9a6a3a/41467_2020_15478_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验